Unidad enlaces químicos



Descargar 385.42 Kb.
Página2/7
Fecha de conversión04.02.2019
Tamaño385.42 Kb.
1   2   3   4   5   6   7

EJERCICIO TIPO 8.3

Dados los símbolos de Lewis para los elementos nitrógeno y flúor que se muestran en la tabla 8.1, prediga la fórmula del compuesto binario estable que se forma por la reacción de nitrógeno con flúor, y dibuje su estructura de Lewis.



Solución

Análisis: Los símbolos de Lewis para el nitrógeno y el flúor (Tabla 8.1) indican que el nitrógeno tiene cinco electrones de capa de valencia y el flúor tiene siete.

Estrategia: Necesitamos hallar una combinación de los dos elementos que produzca un octeto de electrones en torno a cada átomo del compuesto. El nitrógeno requiere tres electrones adicionales para completar su octeto, mientras que el flúor sólo requiere uno. Si los dos elementos comparten un par de electrones, el flúor tendrá un octeto de electrones.

Resolución: El nitrógeno debe compartir un par de electrones con tres átomos de flúor para completar su octeto. Por tanto, la estructura de Lewis del compuesto resultante, NF3, es la siguiente:

Comprobación: Cada par de electrones compartidos se representa con una línea. Los tres átomos de flúor y el átomo central de nitrógeno tienen un octeto de electrones cada uno.

EJERCICIO DE APLICACIÓN

Compare el símbolo de Lewis del neón y la estructura de Lewis del metano, CH4. ¿En qué sentido importante se parecen los acomodos de electrones en torno al neón y al carbono? ¿En qué aspecto importante difieren?



Respuesta: Ambos átomos están rodeados por un octeto de electrones. Sin embargo, los electrones en torno al neón no están compartidos, mientras que los que rodean al carbono son pares compartidos con cuatro átomos de hidrógeno.
Enlaces múltiples.
Al compartirse un par de electrones, se forma un solo enlace covalente, al que generalmente llamamos enlace sencillo. En muchas moléculas, los átomos completan un octeto compartiendo más de un par de electrones entre ellos. Cuando se comparten dos pares de electrones, dibujamos dos líneas, que representan un doble enlace. En el dióxido de carbono, por ejemplo, se forman enlaces entre carbono, que tiene cuatro electrones de capa de valencia, y oxígeno, que tiene seis:

Como muestra el diagrama, cada oxígeno adquiere un octeto de electrones compartiendo dos pares de electrones con el carbono. El carbono, por su parte, adquiere un octeto de electrones compartiendo dos pares con dos átomos de oxígeno.

En un triple enlace, se comparten tres pares de electrones, como en la molécula del N2:



Puesto que cada átomo de nitrógeno posee cinco electrones en su capa de valencia, es necesario compartir tres pares de electrones para alcanzar la configuración de octeto.

Las propiedades del N2 son del todo congruentes con esta estructura de Lewis. El nitrógeno es un gas diatómico con una reactividad excepcionalmente baja que se debe a la gran estabilidad del enlace nitrógeno-nitrógeno. Un estudio de la estructura del N2 revela que los átomos de nitrógeno sólo están separados 1.10 Å. La corta distancia del enlace N ⎯ N es el resultado del triple enlace entre los átomos. De los estudios realizados con muchas sustancias distintas en las que átomos de nitrógeno comparten uno o dos pares de electrones, hemos averiguado que la distancia media entre dos átomos de nitrógeno enlazados varía según el número de pares de electrones compartidos:



Por regla general, la distancia entre los átomos enlazados disminuye al aumentar el número de pares de electrones compartidos.
Polaridad de los enlaces y electronegatividad.
Cuando dos átomos idénticos forman enlaces, como en el Cl2 o el N2, los pares de electrones se deben compartir equitativamente. En compuestos iónicos como NaCl, en cambio, prácticamente no se comparten electrones. El NaCl se describe mejor como compuesto por iones de Na+ y Cl-. Efectivamente, el electrón 3s del átomo de Na se transfiere totalmente al cloro. Los enlaces que se dan en la mayor parte de las sustancias covalentes quedan en algún punto entre estos dos extremos.

El concepto de polaridad del enlace es útil para describir la forma en que se comparten electrones entre los átomos. En un enlace covalente no polar, los electrones se comparten equitativamente entre dos átomos. En un enlace covalente polar, uno de los átomos ejerce una atracción mayor sobre los electrones de enlace que el otro. Si la diferencia en la capacidad relativa para atraer electrones es lo bastante grande, se forma un enlace iónico.


Electronegatividad.
Utilizamos una cantidad llamada electronegatividad para estimar si un enlace dado es covalente no polar, covalente polar o iónico. Definimos la electronegatividad como la capacidad de un átomo en una molécula para atraer electrones hacia sí. Cuanto mayor sea la electronegatividad de un átomo, mayor será su capacidad para atraer electrones. La electronegatividad de un átomo en una molécula está relacionada con su energía de ionización y su afinidad electrónica, que son propiedades de los átomos aislados. La energía de ionización mide la fuerza con que el átomo se aferra a sus electrones, y la afinidad electrónica es una medida de la fuerza con que un átomo atrae electrones adicionales. Un átomo con una afinidad electrónica muy negativa y una energía de ionización elevada atraerá electrones de otros átomos y además se resistirá a perder los suyos; será muy electronegativo.

Las estimaciones numéricas de la electronegatividad se pueden basar en diversas propiedades, no sólo la energía de ionización y la afinidad electrónica. La primera escala de electronegatividad, y la de más amplio uso, fue desarrollada por el químico estadounidense Linus Pauling (1901-1994), quien basó su escala en datos termoquímicos. La figura 8.6 muestra los valores de electronegatividad de Pauling para muchos de los elementos. Dichos valores no tienen unidades. El flúor es el elemento más electronegativo, con una electronegatividad de 4.0. El elemento menos electronegativo, el cesio, tiene una electronegatividad de 0.7. Los valores para los demás elementos quedan entre estos dos extremos.

Dentro de cada periodo, generalmente hay un aumento continuo en la electronegatividad de izquierda a derecha; es decir, de los elementos más metálicos a los más no metálicos. Con algunas excepciones (sobre todo dentro de los metales de transición), la electronegatividad disminuye al aumentar el número atómico en cualquier grupo. Esto es lo esperado, ya que sabemos que las energías de ionización tienden a disminuir al aumentar el número atómico en un grupo, y las afinidades electrónicas no cambian mucho. No es necesario memorizar valores numéricos de electronegatividad, pero sí es aconsejable conocer las tendencias periódicas para poder predecir cuál de dos elementos es el más electronegativo.
Electronegatividad y polaridad de los enlaces.
Podemos utilizar la diferencia de electronegatividad entre dos átomos para estimar la polaridad de los enlaces entre ellos. Consideremos estos tres compuestos que contienen flúor:





Figura 8.6 Electronegatividades de los elementos.

En el F2, los electrones se comparten equitativamente entre los átomos de flúor, y el enlace covalente es no polar. Se forma un enlace covalente no polar cuando las electronegatividades de los átomos unidos son iguales.

En el HF, el átomo de flúor tiene mayor electronegatividad que el de hidrógeno, así que los electrones se comparten de forma desigual; el enlace es polar. Se forma un enlace polar cuando los átomos tienen diferente electronegatividad. En el HF, el átomo de flúor, más electronegativo, atrae la densidad electrónica alejándola del átomo de hidrógeno, menos electronegativo. Así, parte de la densidad electrónica que rodea al núcleo de hidrógeno es atraída hacia el núcleo de flúor y deja una carga positiva parcial en el átomo de hidrógeno y una carga negativa parcial en el átomo de flúor. Podemos representar esta distribución de carga así:



Los símbolos δ+ y δ- (léanse “delta más” y “delta menos”) indican las cargas parciales positiva y negativa, respectivamente. Este desplazamiento de la densidad electrónica hacia el átomo más electronegativo puede verse en los resultados de cálculos de distribución electrónica. La figura 8.7 muestra las distribuciones de densidad electrónica en F2, HF y LiF. Las regiones del espacio que tienen una densidad electrónica relativamente alta se muestran en rojo, y las que tienen densidad electrónica relativamente baja, en azul. Puede verse que, en el F2, la distribución es simétrica. En el HF, se ha desplazado obviamente hacia el flúor, y en el LiF el desplazamiento es aún mayor.



Figura 8.7 Distribución de densidades electrónicas calculadas para F2, HF y LiF. Las regiones con densidad electrónica relativamente baja se muestran en azul; las de densidad electrónica relativamente alta en rojo.

En la estructura tridimensional de LiF, análoga a la que se muestra para NaCl en la figura 8.3, la transferencia de carga electrónica es prácticamente total. Por tanto, el enlace que se produce es iónico. Estos ejemplos ilustran el hecho de que, cuanto mayor es la diferencia de electronegatividad entre dos átomos, más polar es su enlace. El enlace covalente no polar está en un extremo de un continuo de tipos de enlaces, y el enlace iónico está en el otro extremo. Entre ellos, hay una amplia gama de enlaces covalentes polares, que difieren en el grado de desigualdad de la forma en que se comparten los electrones.


EJERCICIO TIPO 8.4

¿Cuál enlace es más polar: (a) B⎯Cl o C⎯Cl; (b) P⎯F o P⎯Cl? Indique en cada caso cuál átomo tiene la carga parcial negativa.



Solución (a) La diferencia de electronegatividad entre el cloro y el boro es de 3.0 - 2.0 = 1.0; la diferencia entre el cloro y el carbono es de 3.0 - 2.5 = 0.5. Por consiguiente, el enlace B⎯Cl es el más polar; el átomo de cloro lleva la carga parcial negativa porque tiene la electronegatividad más alta. Deberemos poder llegar a esta conclusión utilizando tendencias periódicas en vez de una tabla de electronegatividades. Dado que el boro está a la izquierda del carbono en la tabla periódica, predecimos que atrae con menor fuerza los electrones. El cloro, al estar en el lado derecho de la tabla, tiene una atracción intensa por los electrones. El enlace más polar será entre el átomo con menor atracción por los electrones (boro) y aquel con la mayor atracción (cloro). (b) Puesto que el flúor está arriba del cloro en la tabla periódica, deberá ser más electronegativo. De hecho, las electronegatividades son F = 4.0, Cl = 3.0. Por tanto, el enlace P⎯ F es más polar que el enlace P⎯Cl. Es recomendable comparar las diferencias de electronegatividad de los dos enlaces para verificar esta predicción. El átomo de flúor lleva la carga parcial negativa.

EJERCICIO DE APLICACIÓN

¿Cuál de los enlaces siguientes es el más polar: S⎯Cl, S⎯Br, Se⎯Cl o Se⎯Br?



Respuesta: Se⎯Cl.
Momentos dipolares.
La diferencia de electronegatividad entre el H y el F da pie a un enlace covalente polar en la molécula del HF. Por tanto, hay una concentración de carga negativa en el átomo más electronegativo, el F, y el átomo menos electronegativo, el H, queda en el extremo positivo de la molécula. Una molécula como la del HF, en la que los centros de carga positiva y negativa no coinciden, es una molécula polar. Por tanto, no sólo describimos los enlaces como polares y no polares; también describimos así moléculas enteras.

Podemos indicar la polaridad de la molécula de HF de dos formas:



Como vimos en la sección anterior, “δ_” y “δ_” indican las cargas parciales positiva y negativa en los átomos de H y F. En la notación de la derecha la flecha denota el desplazamiento de la densidad electrónica hacia el átomo de flúor. El extremo cruzado de la flecha puede verse como un signo más que designa el extremo positivo de la molécula.

La polaridad contribuye a determinar muchas de las propiedades de las sustancias que observamos en el nivel macroscópico, en el laboratorio y en la vida cotidiana. Las moléculas polares se alinean unas respecto a otras y respecto a los iones. El extremo negativo de una molécula y el extremo positivo de otra se atraen mutuamente. Asimismo, las moléculas polares son atraídas hacia los iones. El extremo negativo de una molécula polar es atraído hacia un ion positivo, y el extremo positivo es atraído hacia un ion negativo. Estas interacciones explican muchas propiedades de los líquidos, los sólidos y las soluciones.

¿Cómo cuantificamos la polaridad de una molécula como la del HF? Siempre que dos cargas eléctricas de igual magnitud, pero de signo opuesto están separadas cierta distancia, se establece un dipolo. La medida cuantitativa de la magnitud de un dipolo se llama momento dipolar, denotado con m. Si dos cargas de igual magnitud, Q+ y Q-, están separadas una distancia r, la magnitud del momento dipolar es el producto de Q y r (Figura 8.8).

El momento dipolar aumenta al incrementarse la magnitud de la carga separada y al aumentar la distancia entre las cargas.



Figura 8.8 Cuando cargas de igual magnitud y signo opuesto, Q+ y Q-, se separan una distancia r, se produce un dipolo. La magnitud del dipolo está dada por el momento dipolar, m, que es el producto de la carga separada y la distancia de separación entre los centros de carga: μ = Qr.

Los momentos dipolares de las moléculas suelen darse en debyes (D), unidad que equivale a 3.34 x 10-30 coulombs-metro (C-m). En el caso de las moléculas, solemos medir la carga en unidades de la carga del electrón, e = 1.60 x 10-19 C, y la distancia en amgstroms, Å. Supongamos que dos cargas, 1+ y 1- (en unidades de e), están separadas una distancia de 1.00 Å. El momento dipolar producido es:



EJERCICIO TIPO 8.5

La distancia entre los centros de los átomos de H y Cl en la molécula de HCl (llamada longitud de enlace) es de 1.27 Å. (a) Calcule el momento dipolar, en D, que se produciría si las cargas en los átomos de H y Cl fueran 1+ y 1-, respectivamente. (b) El momento dipolar del HCl(g), medido experimentalmente, es de 1.08 D. ¿Qué magnitud de carga, en unidades de e, en los átomos de H y Cl daría lugar a este momento dipolar?



Solución

Análisis y estrategia: Nos piden calcular el momento dipolar que tendría el HCl si cada átomo tuviera su carga completa, y usar ese valor para calcular las cargas parciales efectivas de H y Cl que producirían el momento dipolar observado.

Resolución: (a) La carga en cada átomo es la carga del electrón, e = 1.60 x 10-19 C. La separación es de 1.27 Å. El momento dipolar es:

El momento dipolar calculado es mayor que en el ejemplo anterior porque la distancia entre las cargas aumentó de 1.00 Å a 1.27 Å.

(b) En este caso conocemos el valor de μ, 1.08 D, y el valor de r, 1.27 Å, y queremos calcular el valor de Q:

Es fácil convertir esta carga a unidades de e:

Así, el momento dipolar experimental indica la siguiente separación de carga en la molécula de HCl:

Dado que el momento dipolar experimental es menor que el calculado en la parte (a), las cargas de los átomos son menores que una carga de electrón. Podríamos haber anticipado esto porque el enlace H ⎯ Cl es covalente polar, no iónico.

EJERCICIO DE APLICACIÓN

El momento dipolar del monofluoruro de cloro, ClF(g) es de 0.88 D. La longitud del enlace de la molécula es de 1.63 Å. (a) ¿En qué átomo esperaría observar carga negativa? (b) Calcule la carga de ese átomo, en e.



Respuestas: (a) F; (b) 0.11-
En la tabla 8.3 se dan las longitudes de enlace y los momentos dipolares de los halogenuros de hidrógeno. Observe que, al avanzar del HF al HI, la diferencia de electronegatividades disminuye y la longitud del enlace aumenta. El primer efecto reduce la magnitud de la carga separada y hace que el momento dipolar disminuya del HF al HI, a pesar de que la longitud del enlace está aumentando. Podemos “observar” la variación en el grado de desplazamiento de la carga electrónica en estas sustancias calculando la distribución de electrones, como se muestra en seguida. Para estas moléculas el cambio en la diferencia de electronegatividades afecta más el momento dipolar que la longitud del enlace.


Tipos de enlaces y nomenclaturas.
Se da primero el nombre del elemento más electronegativo, modificado de modo que termine en -uro (o -ido, en el caso del oxígeno), seguido de la partícula “de” y del nombre del elemento menos electronegativo. Los compuestos iónicos reciben nombres basados en sus iones componentes, incluida la carga del catión si es variable. Los compuestos moleculares se nombran empleando los prefijos de la tabla 2.6 para indicar el número de átomos de cada tipo en la sustancia:


Cómo dibujar estructuras de Lewis.
Las estructuras de Lewis nos ayudan a entender los enlaces en muchos compuestos y se utilizan con frecuencia al estudiar las propiedades de las moléculas. Dibujar estructuras de Lewis es una habilidad importante que el estudiante debe practicar. Para ello, se debe seguir un procedimiento ordenado. Primero bosquejaremos el procedimiento, y luego veremos varios ejemplos.

  1. Sumar los electrones de valencia de todos los átomos. (Use la tabla periódica si es necesario para determinar el número de electrones de valencia de cada átomo.) En el caso de un anión, sume un electrón al total por cada carga negativa. En el caso de un catión, reste un electrón por cada carga positiva. No se preocupe por recordar cuáles electrones provienen de cuáles átomos; lo único que importa es el número total.

  2. Escriba los símbolos de los átomos para indicar cuáles átomos están unidos entre sí, y conéctelos con un enlace sencillo (un guión, que representa dos electrones). Las fórmulas químicas suelen escribirse en el orden en que los átomos se conectan en la molécula o ion, como en el HCN. Si un átomo central tiene un grupo de átomos unido a él, el átomo central suele escribirse primero, como en el CO32+ y el SF4. Esto ayuda también a recordar que el átomo central es por lo general menos electronegativo que los átomos que lo rodean. En otros casos, tal vez se requiera más información para poder dibujar la estructura de Lewis.

  3. Complete los octetos de los átomos unidos al átomo central. (Recuerde, empero, que el hidrógeno sólo puede tener dos electrones.)

  4. Coloque los electrones que sobren en el átomo central, incluso si ello da lugar a más de un octeto.

  5. Si no hay suficientes electrones para que el átomo central tenga un octeto, pruebe con enlaces múltiples. Utilice uno o más de los pares de electrones no compartidos de los átomos unidos al átomo central para formar dobles o triples enlaces.


EJERCICIO TIPO 8.6

Dibuje la estructura de Lewis del tricloruro de fósforo, PCl3.



Solución Primero, sumamos los electrones de valencia. El fósforo (grupo 5A) tiene cinco electrones de valencia, y cada cloro (grupo 7A) tiene siete. El número total de electrones de capa de valencia es entonces
5 + (7 x 3) = 26
Segundo, acomodamos los átomos indicando cuál átomo está conectado con cuál, y dibujamos un enlace sencillo entre ellos. Podríamos acomodar los átomos de varias formas, pero en los compuestos binarios (de dos elementos) el primer elemento de la fórmula química generalmente está rodeado por los demás átomos. Así, partimos de una estructura de esqueleto que tiene enlaces sencillos entre el fósforo y cada uno de los cloros:

(No es crucial colocar los átomos exactamente en esta disposición.)
Tercero, completamos los octetos de los átomos unidos al átomo central. Al colocar octetos alrededor de cada átomo de Cl damos cuenta de 24 electrones:

Cuarto, colocamos los dos electrones restantes en el átomo central, con lo que también completamos el octeto alrededor de ese átomo:

Esta estructura da a cada átomo un octeto, así que nos detenemos aquí. (Recuerde que para alcanzar un octeto los electrones de enlace cuentan para ambos átomos.)

EJERCICIO DE APLICACIÓN

(a) ¿Cuántos electrones de valencia deberán aparecer en la estructura de Lewis para el CH2Cl2?

(b) Dibuje la estructura de Lewis.

Respuestas: (a) 20; (b)
EJERCICIO TIPO 8.7

Dibuje la estructura de Lewis del HCN.



Solución El hidrógeno tiene un electrón de capa de valencia, el carbono (grupo 4A) tiene cuatro, y el nitrógeno (grupo 5A) tiene cinco. El número total de electrones de capa de valencia es entonces 1 + 4 + 5 = 10. Una vez más, hay varias formas de acomodar los átomos. Puesto que el hidrógeno sólo puede dar cabida a un par de electrones, siempre tiene asociado un solo enlace sencillo en cualquier compuesto. Este hecho nos obliga a rechazar C ⎯ H ⎯ N como posible acomodo. Las dos posibilidades restantes son H ⎯ C ⎯ N y H ⎯ N ⎯ C. La primera es la disposición que se observa experimentalmente. Podríamos haber adivinado que éste es el acomodo de los átomos porque la fórmula se escribe con los átomos en este orden. Por tanto, partimos de una estructura de esqueleto con enlaces sencillos entre el hidrógeno, el carbono y el nitrógeno:

Estos dos enlaces dan cuenta de cuatro electrones. Si ahora colocamos los seis electrones restantes alrededor del N para darle un octeto, no logramos un octeto en el C:

Por tanto, probamos con un doble enlace entre C y N, usando uno de los pares de electrones no compartidos que habíamos colocado en el N. Una vez más, hay menos de ocho electrones en el C, así que probamos con un triple enlace. Esta estructura nos da un octeto alrededor del C y del N:


Compartir con tus amigos:
1   2   3   4   5   6   7


La base de datos está protegida por derechos de autor ©composi.info 2017
enviar mensaje

    Página principal