Unidad enlaces químicos



Descargar 385.42 Kb.
Página1/7
Fecha de conversión04.02.2019
Tamaño385.42 Kb.
  1   2   3   4   5   6   7

UNIDAD 3. ENLACES QUÍMICOS.

Siempre que átomos o iones se unen fuertemente unos a otros, decimos que hay un enlace químico entre ellos. Hay tres tipos generales de enlaces químicos: iónicos, covalentes y metálicos.

El término enlace iónico se refiere a las fuerzas electrostáticas que existen entre iones con carga opuesta. Los iones podrían formarse a partir de átomos por la transferencia de uno o más electrones de un átomo a otro. Las sustancias iónicas casi siempre son el resultado de la interacción entre metales de la extrema izquierda de la tabla periódica y no metales de la extrema derecha (excluidos los gases nobles, grupo 8A).

Un enlace covalente es el resultado de compartir electrones entre dos átomos. Los ejemplos más conocidos de enlaces covalentes se observan en las interacciones de los elementos no metálicos entre sí.

Los enlaces metálicos se encuentran en metales como cobre, hierro y aluminio. En los metales, cada átomo está unido a varios átomos vecinos. Los electrones de enlace tienen relativa libertad para moverse dentro de toda la estructura tridimensional del metal. Los enlaces metálicos dan pie a propiedades metálicas típicas como elevada conductividad eléctrica y lustre.
Símbolos de Lewis.
Los electrones que participan en los enlaces químicos se denominan electrones de valencia: los que residen en la capa exterior incompleta de los átomos. El químico estadounidense G. N. Lewis (1875-1946) sugirió una forma sencilla de representar los electrones de valencia de los átomos y de seguirles la pista durante la formación de enlaces, utilizando lo que ahora se conoce como símbolos de electrón- punto de Lewis o simplemente símbolos de Lewis. El símbolo de Lewis para un elemento consiste en el símbolo químico del elemento más un punto por cada electrón de valencia. Por ejemplo, el azufre tiene la configuración electrónica [Ne]3s23p4; por tanto, su símbolo de Lewis muestra seis electrones de valencia:

Los puntos se colocan en los cuatro lados del símbolo atómico: arriba, abajo, a la izquierda y a la derecha. Cada lado puede dar cabida a dos electrones como máximo. Los cuatro lados del símbolo son equivalentes; la colocación de dos electrones en un lado o de uno a cada lado es arbitraria.

Las configuraciones electrónicas y los símbolos de Lewis de los elementos representativos de las filas segunda y tercera de la tabla periódica se muestran en la tabla 8.1. Obsérvese que el número de electrones de valencia de cualquier elemento representativo es el mismo que el número de grupo en el que está el elemento en la tabla periódica. Por ejemplo, los símbolos de Lewis para el oxígeno y el azufre, miembros del grupo 6A, tienen seis puntos.


La regla del octeto.
Los átomos con frecuencia ganan, pierden o comparten electrones tratando de alcanzar el mismo número de electrones que los gases nobles más cercanos a ellos en la tabla periódica. Los gases nobles tienen acomodos de electrones muy estables, como revela sus altas energías de ionización, su baja afinidad por electrones adicionales y su falta general de reactividad química. Puesto que todos los gases nobles (con excepción del He) tienen ocho electrones de valencia, muchos átomos que sufren reacciones, también terminan con ocho electrones de valencia. Esta observación ha dado lugar a una pauta conocida como regla del octeto: los átomos tienden a ganar perder o compartir electrones hasta estar rodeados por ocho electrones de valencia.


Un octeto de electrones consiste en subcapas s y p llenas de un átomo. En términos de símbolos de Lewis, un octeto puede visualizarse como cuatro pares de electrones de valencia dispuestos alrededor del átomo, como en la configuración de Ne en la tabla 8.1. Hay muchas excepciones a la regla del octeto, pero ofrece un marco de referencia útil para introducir muchos conceptos de enlaces importantes.
Enlaces iónicos.
Cuando el sodio metálico, Na(s), se pone en contacto con cloro gaseoso, Cl2(g), ocurre una reacción violenta. El producto de esta reacción tan exotérmica es cloruro de sodio, NaCl(s):

El cloruro de sodio se compone de iones Na_ y Cl_, que están dispuestos en una matriz tridimensional regular, como se muestra en la figura 8.3.



Figura 8.3 La estructura cristalina del cloruro de sodio. Cada uno de los iones Na+ está rodeado por seis iones Cl-, y cada ion Cl- está rodeado por seis iones Na+.

La formación de Na+ a partir de Na y de Cl- a partir de Cl2 indica que un átomo de sodio perdió un electrón, y que un átomo de cloro lo ganó. Semejante transferencia de electrones para formar iones con carga opuesta ocurre cuando los átomos en cuestión difieren mucho en su atracción por los electrones. El NaCl puede considerarse representativo de los compuestos iónicos porque consiste en un metal con baja energía de ionización y un no metal con elevada afinidad por los electrones. Si utilizamos símbolos de electrón-punto de Lewis (y mostramos un átomo de cloro en lugar de la molécula de Cl2), podemos representar esta reacción como sigue:



La flecha indica la transferencia de un electrón del átomo de Na al átomo de Cl. Cada ion tiene un octeto de electrones. El octeto del Na+ está formado por los electrones 2s22p6 que están abajo del solitario electrón de valencia 3s del átomo de sodio. Hemos puesto corchetes alrededor del ion cloruro para subrayar que los ocho electrones se encuentran exclusivamente en el ion Cl-.
Aspectos energéticos de la formación de enlaces iónicos.
La reacción del sodio con el cloro es muy exotérmica. De hecho, la ecuación 8.1 es la reacción para la formación del NaCl(s) a partir de sus elementos, así que el cambio de entalpía en la reacción es ΔHºf para el NaCl(s). En el apéndice C vemos que el calor de formación de otras sustancias iónicas también es muy negativo. ¿Qué factores hacen que la formación de compuestos iónicos sea tan exotérmica?

En la ecuación 8.2 representamos la formación del NaCl como la transferencia de electrones del Na al Cl. Sin embargo, como vimos cuando estudiamos las energías de ionización, la pérdida de electrones de un átomo siempre es un proceso endotérmico. La eliminación de un electrón del Na(g) para formar el Na+(g) requiere 496 kJ/mol. En contraste, cuando un no metal gana un electrón, el proceso generalmente es exotérmico, como se aprecia al examinar las afinidades electrónicas de los elementos. La adición de un electrón al Cl(g) libera 349 kJ/mol. Si la transferencia de un electrón de un átomo a otro fuera el único factor para formar un enlace iónico, el proceso global casi nunca sería exotérmico. Por ejemplo, la eliminación de un electrón del Na(g) y su adición al Cl(g) es un proceso endotérmico que requiere 496 - 349 = 147 kJ/mol de energía. Sin embargo, esto supone que los átomos de sodio y de cloro están separados por una distancia infinita.

La razón principal por la que los compuestos iónicos son estables es la atracción entre iones con diferente carga. Esta atracción hace que los iones se junten, con lo que se libera energía y se logra que los iones formen una matriz sólida o red como la que se muestra para el NaCl en la figura 8.3. Una medida de la estabilización que se alcanza al disponer iones con cargas opuestas en un sólido iónico está dada por la energía de red. La energía de red es la energía necesaria para separar totalmente un mol de un compuesto iónico sólido en sus iones gaseosos. A fin de visualizar este proceso para el caso del NaCl, imaginemos que la estructura que se muestra en la figura 8.3 se expande desde adentro, de modo que las distancias entre los iones aumentan hasta que los iones quedan muy separados. Este proceso requiere 788 kJ/mol, que es el valor de la energía de red:

Por tanto, el proceso opuesto, en el que el Na+(g) y el Cl-(g) se juntan para formar NaCl(s), es muy exotérmico (ΔH = +788 kJ/mol). En la tabla 8.2 se da la energía de red del NaCl y la de otros compuestos iónicos. Todos los valores son positivos y grandes, lo que indica que los iones experimentan una fuerte atracción entre sí en estos sólidos. La energía liberada por la atracción entre iones con carga distinta compensa con creces la naturaleza endotérmica de las energías de ionización y hace que la formación de compuestos iónicos sea un proceso exotérmico. Las fuertes atracciones también hacen que la mayor parte de los materiales iónicos sean duros y quebradizos, con punto de fusión elevado (el NaCl se funde a 801ºC).

La magnitud de la energía de red de un sólido depende de las cargas de los iones, sus tamaños y su disposición en el sólido. La energía potencial de dos partículas cargadas que interactúan está dada por

En esta ecuación, Q1 y Q2 son las cargas de las partículas, d es la distancia entre sus centros y κ es una constante, 8.99 x 109 J-m/C2. La ecuación 8.4 indica que la interacción atractiva entre dos iones con carga opuesta aumenta conforme se incrementan las magnitudes de sus cargas y conforme disminuye la distancia entre sus centros. Así, para un acomodo dado de iones, la energía de red aumenta al incrementarse las cargas de los iones y al disminuir sus radios. La magnitud de las energías de red depende primordialmente de las cargas iónicas porque la variación de los radios iónicos no abarca un intervalo muy amplio.
EJERCICIO TIPO 8.1

Sin consultar la tabla 8.2, acomode los compuestos iónicos siguientes en orden de energía de red creciente: NaF, CsI y CaO.



Solución

Análisis: Necesitamos determinar cómo la distancia entre los centros de los iones y la magnitud de la carga afectan la energía de red.

Estrategia: Utilizaremos la ecuación 8.4 para contestar esta pregunta.

Resolución: El NaF consiste en iones Na+ y F-, el CsI, de iones Cs+ e I-, y el CaO, de iones Ca2+ y O2-. Dado que el producto de las cargas, Q1Q2, aparece en el numerador de la ecuación 8.4, la energía de red aumentará notablemente si las cargas de los iones aumentan. Por tanto, cabe esperar que la energía de red del CaO, que tiene iones 2+ y 2-, sea la mayor de las tres. Las cargas iónicas en el NaF y en el CsI son iguales; por tanto, la diferencia en sus energías de red dependerá de la diferencia en la distancia entre los centros de los iones en sus cristales. Puesto que los tamaños de los iones aumentan al bajar por un grupo en la tabla periódica, sabemos que el Cs+ es más grande que el Na+ y el I- es más grande que el F-. Por tanto, la distancia entre los iones Na+ y F- en el NaF deberá ser menor que la distancia entre los iones Cs+ e I- en el CsI, y la energía de red del NaF deberá ser mayor que la del CsI.

Comprobación: La tabla 8.2 confirma que el orden de las energías de red es CsI NaF CaO.

EJERCICIO DE APLICACIÓN

¿Qué sustancia esperaría usted que tuviera la energía de red más grande, AgCl, CuO o CrN?



Respuesta: CrN
Cálculo de energías de red: el ciclo Born-Haber.
La energía de red es un concepto útil porque se relaciona directamente con la estabilidad de un sólido iónico. Lamentablemente, dicha energía no puede determinarse directamente realizando experimentos. Sin embargo, sí puede calcularse imaginando que la formación de un compuesto iónico ocurre en una serie de pasos bien definidos. Así, podemos usar la ley de Hess para juntar dichos pasos de forma tal que proporcionen la energía de red del compuesto. Al hacer esto, construimos un ciclo Born-Haber, un ciclo termoquímico nombrado en honor de los científicos alemanes Max Born (1882-1970) y Fritz Haber (1868-1934), quienes lo introdujeron para analizar los factores que contribuyen a la estabilidad de los compuestos iónicos.

En el ciclo Born-Haber para el NaCl, consideramos la formación de NaCl(s) a partir de los elementos Na(s) y Cl2(g) por dos rutas distintas, como se muestra en la figura 8.4. El cambio de entalpía para la ruta directa (flecha roja) es el calor de formación de NaCl(s):



La ruta indirecta consta de cinco pasos (flechas verdes en la figura 8.4). Primero, generamos átomos gaseosos de sodio vaporizando sodio metálico. Luego, formamos átomos gaseosos de cloro rompiendo el enlace de la molécula Cl2. Los cambios de entalpía para estos procesos son entalpías de formación y los podemos encontrar en el apéndice C:

Ambos procesos son endotérmicos; se requiere energía para generar átomos de sodio y cloro gaseosos.

En los dos pasos que siguen, quitamos el electrón del Na(g) para formar el Na+(g) y luego agregamos el electrón al Cl(g) para formar el Cl-(g). Los cambios de entalpía para estos procesos son iguales a la energía de primera ionización del Na, I1(Na) y la afinidad electrónica del Cl, denotada con E(Cl), respectivamente:



Por último, combinamos los iones sodio y cloruro gaseosos para formar cloruro de sodio sólido. Dado que este proceso no es sino el inverso de la energía de red (descomposición de un sólido en iones gaseosos), el cambio de entalpía es el negativo de la energía de red, la cantidad que queremos determinar:

La suma de los cinco pasos del camino indirecto nos da NaCl(s) a partir de Na(s) y 1/2Cl2(g). Así, por la ley de Hess, sabemos que la suma de los cambios de entalpía para estos cinco pasos es igual a la del camino directo, indicado por la flecha roja, ecuación 8.5:

Despejando ΔHred:

Por tanto, la energía de red del NaCl es de 788 kJ/mol.
Configuración electrónica de iones de los elementos representativos.
Los aspectos energéticos de la formación de tales enlaces ayuda a explicar por qué muchos iones tienden a tener configuraciones electrónicas de gas noble. Por ejemplo, el sodio pierde fácilmente un electrón para formar Na+, que tiene la misma configuración electrónica que el Ne:

Aunque la energía de red aumenta al incrementarse la carga iónica, nunca encontramos compuestos iónicos que contienen iones Na2+. El segundo electrón eliminado tendría que provenir de la capa interna del átomo de sodio, y esto requiere una gran cantidad de energía. El aumento en la energía de red no es suficiente para aportar la energía necesaria para eliminar un electrón interno. Por ello, el sodio y los demás metales del grupo 1A se encuentran en las sustancias iónicas sólo como iones 1+.

De forma similar, la adición de electrones a los no metales es exotérmica o apenas endotérmica en tanto los electrones se agreguen a la capa de valencia. Así, un átomo de Cl acepta fácilmente un electrón para formar el Cl-, que tiene la misma configuración electrónica que el Ar:



Un segundo electrón tendría que añadirse a la siguiente capa más alta del átomo de Cl, lo cual es energéticamente muy desfavorable. Por tanto, nunca observamos iones Cl2- en compuestos iónicos.

Utilizando estos conceptos, cabe esperar que los compuestos iónicos de los metales representativos de los grupos 1A, 2A y 3A contengan cationes con cargas de 1+, 2+ y 3+, respectivamente. Asimismo, los compuestos iónicos de los no metales representativos de los grupos 5A, 6A y 7A por lo regular contienen aniones con carga 3-, 2- y 1-, respectivamente. Casi nunca encontramos compuestos iónicos de los no metales del grupo 4A (C, Si y Ge). Los elementos más pesados del grupo 4A (Sn y Pb) son metales y normalmente se encuentran como cationes divalentes en los compuestos iónicos: Sn2+ y Pb2+. Este comportamiento es congruente con el creciente carácter metálico que se observa al bajar por una columna de la tabla periódica.


EJERCICIO TIPO 8.2

Prediga el ion que generalmente forman los átomos siguientes: (a) Sr; (b) S; (c) Al.



Solución En cada caso, podemos utilizar la posición del elemento en la tabla periódica para predecir si formará un catión o un anión. Luego, podremos usar su configuración electrónica para determinar el ion que tiene mayor probabilidad de formarse. (a) El estroncio es un metal del grupo 2A y por tanto formará un catión. Su configuración electrónica es [Kr]5s2; por tanto, esperaremos que se pierdan fácilmente los dos electrones de valencia para dar un ion Sr2+. (b) El azufre es un no metal del grupo 6A y por tanto se encontrará generalmente como anión. Su configuración electrónica ([Ne]3s23p4) necesita dos electrones para alcanzar una configuración de gas noble; por tanto, esperaremos que el azufre tienda a formar iones S2-. (c) El aluminio es un metal del grupo 3A. Por tanto, esperaremos que forme iones Al3+.

EJERCICIO DE APLICACIÓN

Prediga las cargas de los iones que se forman cuando el magnesio reacciona con nitrógeno.



Respuesta: Mg2+ y N3-
Iones de metales de transición.
Dado que las energías de ionización aumentan rápidamente con cada electrón sucesivo que se elimina, las energías de red de los compuestos iónicos generalmente sólo alcanzan a compensar la pérdida de cuanto más tres electrones de los átomos. Por ello, encontramos cationes con cargas de 1+, 2+ o 3+ en los compuestos iónicos. Sin embargo, la mayor parte de los metales de transición tiene más de tres electrones más allá de un centro de gas noble. La plata, por ejemplo, tiene la configuración electrónica [Kr]4d105s1. Los metales del grupo 1B (Cu, Ag, Au) suelen encontrarse como iones 1+ (como en el CuBr y el AgCl). Al formarse el ion Ag+, se pierde el electrón 5s y queda una subcapa 4d totalmente llena. Como ilustra este ejemplo, los metales de transición generalmente no forman iones con configuraciones de gas noble. La regla del octeto, aunque útil, tiene obviamente un alcance limitado.

Cuando se forma un ion positivo a partir de un átomo, siempre se pierden electrones primero de la subcapa que tiene el valor más grande de n. Así, al formar iones, los metales de transición pierden primero los electrones s de la capa de valencia, y luego tantos electrones d como sean necesarios para alcanzar la carga del ion. Consideremos el Fe, con la configuración electrónica [Ar]3d64s2. Al formar el ion Fe2+, se pierden los dos electrones 4s, dando pie a una configuración [Ar]3d6. La eliminación de un electrón adicional produce el ion Fe3+, cuya configuración electrónica es [Ar]3d5.


Enlaces covalentes.
Las sustancias iónicas poseen varias propiedades características: suelen ser sustancias quebradizas con punto de fusión elevado, y por lo regular son cristalinas, es decir, los sólidos tienen superficies planas que forman ángulos característicos entre sí. Los cristales iónicos con frecuencia pueden hendirse, es decir, romperse a lo largo de superficies planas y lisas. Estas características son el resultado de las fuerzas electrostáticas que mantienen a los iones en una disposición tridimensional rígida y bien definida como la que se muestra en la figura 8.3.

La gran mayoría de las sustancias químicas no poseen las características de los materiales iónicos. Casi todas las sustancias con las que entramos en contacto a diario, como el agua, tienden a ser gases, líquidos o sólidos de bajo punto de fusión. Muchas, como la gasolina, se vaporizan fácilmente. Muchas son flexibles en su forma sólida; por ejemplo, las bolsas de plástico y la parafina.

Para la clase tan amplia de sustancias que no se comportan como sustancias iónicas necesitamos un modelo diferente para el enlace entre los átomos. G. N. Lewis razonó que un átomo podría adquirir una configuración electrónica de gas noble compartiendo electrones con otros átomos. Un enlace químico que se forma compartiendo un par de electrones se llama enlace covalente.

La molécula de hidrógeno, H2, ofrece el ejemplo más sencillo posible de enlace covalente. Cuando dos átomos de hidrógeno se acercan mucho, se hacen sentir atracciones electrostáticas entre ellos. Los dos núcleos con carga positiva y los dos electrones con carga negativa se repelen mutuamente, mientras que los núcleos y los electrones se atraen, como se muestra en la figura 8.5(a). Para que la molécula de H2 pueda existir como entidad estable, las fuerzas de atracción deberán exceder a las de repulsión. Pero, ¿por qué?

Si aplicamos métodos de la mecánica cuántica análogos a los que se usan con átomos, podremos calcular la distribución de la densidad electrónica en las moléculas. Un cálculo semejante para el H2 muestra que las atracciones entre los núcleos y los electrones hacen que la densidad electrónica se concentre entre los núcleos, como se muestra en la figura 8.5(b). En consecuencia, las interacciones electrostáticas totales son atractivas. Así pues, los átomos del H2 se mantienen unidos principalmente porque los dos núcleos son atraídos electrostáticamente hacia la concentración de carga negativa que está entre ellos. En esencia, el par compartido de electrones en cualquier enlace covalente actúa como una especie de “pegamento” que une a los átomos como en la molécula de H2.
Estructuras de Lewis.
Podemos representar la formación de enlaces covalentes utilizando símbolos de Lewis para mostrar los átomos constituyentes. La formación de la molécula de H2 a partir de dos átomos de H se puede representar así:

Así, cada átomo de hidrógeno adquiere un segundo electrón y alcanza la configuración electrónica estable, con dos electrones, del gas noble helio.

La formación de un enlace entre dos átomos de cloro para dar una molécula de Cl2 se puede representar de forma similar:



Cada átomo de cloro, al compartir el par de electrones de enlace, adquiere ocho electrones (un octeto) en su capa de valencia, y alcanza la configuración electrónica de gas noble del argón.

Las estructuras que se muestran aquí para H2 y Cl2 se denominan estructuras de Lewis (o estructuras de electrón-punto de Lewis). Al escribir estructuras de Lewis, normalmente indicamos con una línea cada par de electrones compartido entre dos átomos, y los pares de electrones no compartidos se dibujan como puntos. Siguiendo esta convención, las estructuras de Lewis para H2 y Cl2 se dibujan así:



Para los no metales, el número de electrones de valencia de un átomo neutro es igual al número de grupo. Por tanto, podríamos predecir que los elementos del grupo 7A, como F, forman un enlace covalente para alcanzar un octeto; los elementos del grupo 6A, como el O, formarían dos enlaces covalentes; los elementos 5A, como el N, formarían tres enlaces covalentes; y los elementos 4A, como el C, formarían cuatro enlaces covalentes. Estas predicciones se cumplen en muchos compuestos. Por ejemplo, consideremos los compuestos de hidrógeno sencillos con los no metales de la segunda fila de la tabla periódica:

Así, el modelo de Lewis logra explicar la composición de muchos compuestos formados por no metales, en los que predominan los enlaces covalentes.

Compartir con tus amigos:
  1   2   3   4   5   6   7


La base de datos está protegida por derechos de autor ©composi.info 2017
enviar mensaje

    Página principal