Sm. 853-1 Anchura de banda necesaria



Descargar 84.46 Kb.
Fecha de conversión19.03.2019
Tamaño84.46 Kb.

Rec. UIT-R SM. 853-1

RECOMENDACIÓN UIT-R SM.853-1*

ANCHURA DE BANDA NECESARIA

(1992-1997)



Rec. UIT-R SM. 853-1

La Asamblea de Radiocomunicaciones de la UIT,



considerando

a) que el concepto de «anchura de banda necesaria» definido en el número 146 (S1.152) del Reglamento de Radiocomunicaciones permite especificar de la manera más simple posible las propiedades espectrales de cada emisión o clase de emisión;

b) que, desde el punto de vista de la utilización eficaz del espectro de frecuencias radioeléctricas, es imperativo conocer las anchuras de banda necesarias de las distintas clases de emisión, que en ciertos casos las fórmulas indicadas en la Recomendación UIT-R SM.1138 sólo pueden servir de orientación, y que la anchura de banda necesaria de ciertas clases de emisión debe evaluarse en relación con una norma de transmisión especificada y con la calidad requerida;

c) que, debido a la evolución de la tecnología se han introducido adiciones y variaciones en los métodos de modulación utilizados en el ámbito de la radiocomunicación;

d) que los parámetros numéricos de las fórmulas relativas a la anchura de banda necesaria pueden cambiar con el tiempo debido a ciertas modificaciones de las características de la señal (por ejemplo, nivel medio de la persona que habla),

recomienda

que las fórmulas relativas a la anchura de banda necesaria (que aparecen en la Recomendación UITR SM.1138) se completen con las fórmulas indicadas a continuación.


1 Emisiones multicanal de multiplexión por división de frecuencia y modulación de frecuencia (MDF-MF)


Para tener en cuenta los cambios del nivel medio de la persona que habla que pueden producirse con el tiempo, la anchura de banda necesaria, Bn, de una emisión multicanal MDF viene dada por la fórmula:

donde:


M : frecuencia máxima de modulación (Hz)

d : excursión de frecuencia por canal

Nc : número de circuitos en la carga de mensajes multiplexados

K : unidad

X    –2  a   2,6 para 12   Nc     60 y para  Y     2

X    –5,6 a   –1,0 para 60   Nc    240 y para  Y     4

X  –19,6 a  –15,0 para Nc    240 y para  Y    10.

El término entre paréntesis corresponde a la desviación de frecuencia de cresta, D. El numerador (X  Y log Nc) de la fracción representa la potencia media de la señal compuesta aplicada a la entrada del modulador del transmisor.

El fundamento de esta fórmula se expone en el § 1 del Anexo 1. En particular, en el Anexo 1 se indica la manera de determinar el valor de la variable X de la fórmula.

2 Emisiones por impulsos no modulados


En el Cuadro 1 se indica la anchura de banda necesaria de los impulsos no modulados de forma trapezoidal o rectangular.

CUADRO 1


Emisiones por impulsos no modulados

Descripción



Anchura de banda necesaria

Denominación



de la emisión

Fórmula

Ejemplo de cálculo

de la emisión

Emisión de impulsos no modulados

Caso 1:




4M00P0N




Hz

t     3    10 6 s

tr    0,06675    10 6 s







a 20 dB por debajo del valor de cresta de la envolvente del espectro para un impulso trapezoidal

Anchura de banda:  4    106 Hz







Caso 2:




3M36P0N







t     3    10 6 s

tr    0,06675    10 6 s

tf    0,167    10 6 s







20 dB por debajo del valor de cresta de la envolvente del espectro para un impulso trapezoidal asimétrico

Anchura de banda:  3,36    106 Hz







Caso 3:




4M50P0N




Hz

t      1,41    10 6 s

Bn    4,5    106 Hz







a 20 dB por debajo del valor de cresta de la envolvente del espectro para un impulso rectangular (ideal)











En el Anexo 2 se expone el método utilizado para determinar la anchura de banda necesaria de los impulsos no modulados.


3 Modulación digital


En el Cuadro 2 se indica la anchura de banda necesaria y se dan ejemplos del valor de K para diversos métodos de modulación digital.

En el Anexo 3 se exponen los métodos utilizados para determinar las anchuras de bandas necesarias de la modulación digital.

CUADRO 2

Modulación digital

Tipo de modulación y condiciones


Expresión de la anchura de banda necesaria


Ejemplo de valor


de K

Porcentaje de confinamiento de potencia fraccional en la anchura de banda(1)

Modulación por desplazamiento
de fase binaria (MDP-2) (sin filtrar)
S  2 (calculado)




10,28
2,0

99
95

MDP-2 (con filtro, BER  1  10–3)
S  2 (calculado)




1,0(2)
0,75(3)

100
100

Modulación por desplazamiento mínimo (MDM) (sin filtrar)
S  2 (calculado)
D  0,25 R




0,36
3,52

99
99,9

MDM con filtro gaussiano (MDMG)
Anchura de banda a 3 dB del filtro gaussiano de premodulación  0,25 R
S  2 (calculado)
D  0,25 R



–0,28
0,18



99
99,9



MF digital (MDF con fase continua) impulsos rectangulares
S  2 (calculado)
D  0,35 R


0,89

99


MAQ-m
Digital microondas
S  2n (n  2)
Caída  0 a 1
División Tx/Rx de 50% con filtrado óptimo (calculado)(4), (5)



Véase la Fig. 1



Véase la Fig. 1



BER: proporción de bits erróneos.

MAQ: modulación de amplitud en cuadratura.

MDF: modulación por desplazamiento de frecuencia.

(1) En la Recomendación UIT-R F.1191 se prevé que para el servicio fijo con modulación digital, la anchura de banda deberá definirse para un porcentaje de confinamiento de potencia fraccional igual a 99%.

(2) Para este caso Eb /N0  7,5 dB.

(3) Para este caso Eb /N0  9,3 dB.

(4) El filtrado utilizado en la práctica puede producir una ligera diferencia en la relación calculada entre el valor de K y el confinamiento.

(5) Los formatos MAQ-4 y MAQ-8 coinciden con los formatos MDP-4 y MDP-8 con filtrado.







FIGURE SM.0853-1  10 CM

ANEXO 1

Cálculos de las anchuras de banda necesarias MDF-MF

1 Emisiones multicanal MDF-MF


La Recomendación UIT-R SM.1138 «Determinación de las anchuras de banda necesarias, con inclusión de ejemplos de cálculo de las mismas y ejemplos conexos de denominación de emisiones», incluye en el Cuadro III-B del Anexo 1, los factores necesarios para su utilización en el cálculo de la excursión de frecuencia de cresta en las emisiones multicanal con MDFMF. La excursión de frecuencia de cresta es un factor crítico en la regla de Carson, Bn  2M  2DK, utilizada para calcular la anchura de banda necesaria para los fines de atribución del espectro de frecuencias. A continuación se reproduce el Cuadro III-B como Cuadro 3.

Los factores 2,6, –1 y –15 del Cuadro representan los valores medios de potencia (dBm0 (véase la Nota 1)) que se encontraron en un circuito normalizado de la red telefónica conmutada pública comercial. Los valores se basaban, de hecho, en mediciones del «volumen de la persona que habla» llevadas a cabo en 1960 que se aceptaron previamente en el ex CCIR y eventualmente en la Conferencia Administrativa Mundial de Radiocomunicaciones (Ginebra, 1979), como aplicables para el cálculo de la anchura de banda necesaria.

NOTA 1 – «dBm0» se refiere a la potencia (dB) relativa a 1 mW referida a un punto de nivel de transmisión relativo cero.

CUADRO 3


Emisiones multicanal MDF-MF

FACTORES DE MULTIPLICACIÓN QUE DEBEN UTILIZARSE PARA CALCULAR
LA EXCURSIÓN DE FRECUENCIA DE CRESTA D EN LAS EMISIONES
MULTICANAL CON MODULACIÓN DE FRECUENCIA Y MULTIPLAJE
POR DISTRIBUCIÓN DE FRECUENCIA (MF-MDF)

Para los sistemas MF-MDF, la anchura de banda necesaria es:

Bn    2 M    2 DK

El valor de D, excursión de frecuencia de cresta, que aparece en estas fórmulas de Bn se calcula multiplicando el valor eficaz de la excursión por canal, por el «factor de multiplicación» apropiado que se indica más abajo.

En el caso en que exista una señal piloto de continuidad, de frecuencia fp por encima de la frecuencia de modulación máxima M, la fórmula general pasa a ser:

Bn    2 fp    2 DK

En el caso en que el índice de modulación de la portadora principal producido por la señal piloto, sea inferior a 0,25 y la excursión de frecuencia eficaz de la portadora principal producida por la señal piloto sea inferior o igual al 70% del valor eficaz de la excursión por canal, la fórmula general pasa a ser:



Bn    2 fp o Bn    2 M    2 DK

adoptándose el valor que sea mayor.






Factor de multiplicación(1)

Número de canales telefónicos, Nc



(Factor de cresta)  antilog






3 < Nc < 12



4,47  antilog






12  Nc < 60

3,76  antilog




60  Nc < 240

3,76  antilog




Nc  240

3,76  antilog




(1) En este Cuadro, los factores de multiplicación 3,76 y 4,47 corresponden a factores de cresta de 11,5 dB y 13,0 dB respectivamente.




En 1975 y en 1976, se realizaron ulteriores mediciones de la potencia de la señal de conversación en los mismos circuitos y redes, utilizando una metodología similar, para permitir de esta forma realizar una comparación directa de los resultados con los del trabajo anterior. Desde aquel momento, se han estado estudiando las últimas mediciones tanto en el sector de la industria como del gobierno, llevando finalmente a ciertas modificaciones en las aplicaciones domésticas típicas en las redes telefónicas públicas conmutadas.

Para resumir el estudio de 1975-1976, que incluía las razones por las cuales se habían producido las diferencias respecto del estudio anterior, se encontró que a lo largo del tiempo se habían acumulado variaciones substanciales hasta producir un decrecimiento medio en el nivel real de la potencia media de la persona que habla de aproximadamente 4,6 dB. Las variaciones habían tendido a aumentar la uniformidad del servicio en las redes conmutadas públicas desde el punto de vista de los volúmenes de conversación. Estas incluyen una disminución en la proporción de sistemas interurbanos con baterías, mejoras de los planes de atenuación, aparatos telefónicos actualizados y un aumento de las conexiones directas. La marcación directa se ha transformado en una práctica normal con nuevas técnicas puestas en práctica para el diseño de los bucles y de los enlaces. Además una tecnología avanzada de adquisición digital de datos facilitó las mediciones durante el periodo 1975-1976 de la potencia de señal de conversación con una precisión mayor de lo que era posible en 1960 cuando para este análisis se utilizaron medidores de unidad de volumen (VU – volume unit). Se redujo la desviación típica de todas las mediciones entre los estudios de 1960 y de 1975-1976 en un valor medio próximo a 1/3, desde 7 a 4,6 VU. Se utilizó un esquema de muestreo estadístico multietapa (extremo próximo y extremo distante) de las mediciones de la potencia de la persona que habla en más de 10 000 llamadas, procedentes de aproximadamente 2 500 bucles. La potencia media de la señal de conversación (promediada a lo largo del intervalo completo de observación), y una nueva medida del nivel de la palabra, conocida como el nivel de cresta equivalente, fueron las medidas utilizadas para caracterizar las señales de la persona que habla. Como parte del estudio de 19751976 se registraron la corriente c.c. de bucle, la clase de servicio, el tipo de conmutador y el destino de la llamada.

NOTA 2 – La VU constituye una manera de medir el nivel de la palabra con un indicador del nivel de potencia calibrado en términos de dB para un voltaje sinusoidal permanente, tomando como referencia 1 mW sobre 600 . La respuesta del indicador no está ponderada en frecuencia. Las lecturas del VU son valores medios conseguidos mediante un conjunto determinado de características (mecánicas) del medidor balístico.

El último estudio indicaba que con los sistemas de las redes conmutadas públicas (1975 y 1976), existía una baja dependencia de la potencia de la señal de conversación respecto del destino de la llamada o de la clase de servicio que originaba la llamada (residencial, negocios, local, interurbano y combinado). Las pequeñas diferencias se explican en su mayor parte por las características del bucle. Existe una pequeña variación, si la hay, en la potencia de la señal de conversación atribuida, por las conclusiones del estudio, a factores sicológicos como la distancia de la llamada o la percepción del volumen recibido. Los valores medios medidos indican que la red conmutada de telecomunicaciones de 19751976 era esencialmente transparente a los usuarios en el sentido de que se puso de manifiesto que la señal de la persona que hablaba era insensible a la distancia de la llamada, a la clasificación de llamada local o interurbana, o a otros factores que eran ajenos a las circunstancias del bucle local. En resumen, se cree que las últimas mediciones del «nivel telefónico de la persona que habla» indican los mismos niveles normales de conversación de la población cuando ésta no utiliza el teléfono. Se concluye que es de esperar que en el futuro se produzcan pocos cambios o ninguno en el nivel representativo de la persona que habla en la red telefónica pública conmutada donde se tomaron las medidas. En consecuencia, debería tener en cuenta este hecho en un examen de las fórmulas de la anchura de banda necesaria para los sistemas MDF-MF donde la conversación telefónica constituye una parte significativa del circuito total de MDFMF.

En la fórmula para obtener Bn que figura en el Cuadro 3, los tres factores 2,6, –1 y –15 son componentes del factor multiplicativo utilizado para determinar D, o la excursión de frecuencia de cresta. Las consecuencias de una reducción en la potencia del abonado que habla en el circuito telefónico que alimenta un circuito radioeléctrico de MDF-MF se traducen en una excursión de cresta menor. Existen tres parámetros independientes que determinan la desviación de cresta de una señal de MF, todos ellos están restringidos por el diseño del sistema de forma a limitar su valor máximo de manera que D no exceda un valor predeterminado (en los sistemas MDF-MF). Estos parámetros son:

– el valor medio cuadrático de la excursión por canal,

– el valor medio de la potencia en un canal de mensajes,

– el número total de canales en la carga de mensajes multiplexados.

Si se reduce la potencia media de las señales vocales, como se ha indicado en el estudio de 1975-1976, podría establecerse un compromiso con los otros dos parámetros, de la manera siguiente:

– aumentando el número de canales en la misma anchura de banda necesaria,

– consiguiendo un mejor aprovechamiento del espectro mediante la reducción de la anchura de banda para el mismo número de canales,

– mediante una combinación de ambos métodos.

Por ejemplo, en los sistemas que utilizan canales de 4 kHz para mensajes de tipo vocal, la relación entre el tráfico de datos y el telefónico puede variar. Un usuario puede permanecer dentro de la anchura de banda de radiofrecuencia (RF) especificada y seleccionar después un nivel medio de potencia del canal de mensajes, que podría utilizarse para lograr un compromiso entre el incremento del número de canales de mensaje y la excursión de frecuencia de cada uno. Para una relación dada entre el tráfico de datos y el tráfico telefónico, un usuario puede creer que un aumento demasiado grande en el número de canales de mensajes de 4 kHz reduciría la excursión por canal hasta un punto en que la calidad de la señal se degradaría. Sin embargo, puede seleccionarse un nivel medio de la potencia del canal de mensajes, que, manteniendo la anchura de banda de RF especificada, permita algún aumento del número de canales de mensaje, dejando lugar aun para un incremento proporcionado de la excursión de frecuencia de cada uno de los canales. Mediante este método, en vez de utilizar todo el espectro disponible para obtener el máximo número de canales de mensaje, podría lograrse un incremento del valor de la excursión por canal, que proporcionaría un aumento de la relación señal/ruido con una probable reducción de la BER en el tráfico de datos.

Por tanto, puede proyectarse un sistema de microondas en el que para el parámetro del nivel medio de la potencia del canal de mensaje se elija entre el nivel utilizado en las ecuaciones actualmente y un nivel 4,6 dB inferior. Existen razones válidas para variar (es decir, aumentar) los otros parámetros disponibles en el sistema cuando se reduce el nivel medio de la potencia del canal de mensaje (potencia de la persona que habla). Sin embargo una decisión de esta índole es apropiada se tome por las empresas de transmisión (o los gobiernos) correspondientes, para tener en cuenta las ventajas e inconvenientes de los diferentes compromisos.

El punto importante aquí es el reconocimiento del nivel medio de la «potencia de la persona que habla» modificado. Para tener en cuenta la disminución de 4,6 dB del valor medio de la «potencia de la persona que habla» en los circuitos de conversación telefónica, típicamente los valores de 2,6, –1, y –15 son reemplazados por la variable X que puede oscilar entre unos límites comprendidos entre los valores actuales y los correspondientes valores 4,6 dB inferiores, dependiendo del número total de circuitos del sistema MDF-MF, y la composición del propio sistema.

Así pues, la anchura de banda necesaria, Bn, viene dada por:

donde:


M : frecuencia máxima de modulación (Hz)

d : excursión de frecuencia por canal

Nc : número de circuitos en la carga de mensajes multiplexados

K : unidad

X    –2  a   2,6 para 12   Nc     60 y para  Y     2

X    –5,6 a   –1,0 para 60   Nc    240 y para  Y     4

X  –19,6 a  –15,0 para Nc    240 y para  Y    10.

El término entre paréntesis corresponde a la desviación de frecuencia de cresta, D. El numerador (X  Y log Nc) de la fracción representa la potencia media de la señal compuesta entregada a la entrada del modulador del transmisor. El valor de 3,76, indicado en el Cuadro 3 corresponde a un factor de cresta de 11,5 dB.

Para seleccionar correctamente un valor para X en la fórmula de Bn, resulta útil resumir las condiciones de aplicación en las que se utiliza un sistema MDF-MF. La elección final dentro de la gama de 4,6 dB puede ser empírica. Está claro según los detalles recogidos del estudio que los niveles medios de «potencia de la persona que habla» de –2 dBm0, _5,6 dBm0 y –19,6 dBm0 deben sustituir a los números correspondientes para Nc   12 en la ecuación de Bn, en el caso de un sistema MDF-MF que se utilice para proporcionar circuitos telefónicos interurbanos modernos, comerciales y públicos, donde la mayoría de los canales MDF-MF se utilizan para telefonía.

En los sistemas MDF-MF de menor tamaño, privados o más antiguos, en especial aquellos con Nc   12 o aquellos que contengan datos (no voz) en la mayoría de los canales, se aplicarán nominalmente los valores originales indicados en el Cuadro 3. Los circuitos de datos multicanales típicos funcionan para niveles de potencia entre –13 dBm0 y –15 dBm0. Por tanto, para sistemas con un gran porcentaje de circuitos de datos y N  240 el límite de carga compuesto se determinará utilizando un valor de X entre –13 y –15. La señalización por cada canal, opuesta a la señalización por canal común, constituye una indicación de que el nivel de –15 dBm0 resulta aplicable (sistemas con Nc   240).

La elección del nivel de potencia de la señal dentro de la gama de 4,6 dB es, como se indicó anteriormente, una cuestión sobre todo de experiencia. La banda de frecuencias de RF propiamente dicha, no está relacionada con la elección de los parámetros de la «potencia de la persona que habla». Se ha observado que, como ejemplo de la aplicación práctica de los nuevos parámetros, podrían explotarse hasta 1 800 canales telefónicos en la misma anchura de banda de radiofrecuencia de los sistemas terrenales de microondas del servicio fijo punto a punto proyectados actualmente únicamente para 1 500 circuitos, lo que representa un desarrollo significativo en lo que se refiere a mejorar la eficacia de la utilización del espectro.

ANEXO 2


Cálculos de anchura de banda necesarios en impulsos no modulados

Se especifican las anchuras de banda necesarias en los casos comunes de impulsos no modulados de forma trapezoidal o rectangular. Para establecer la anchura de banda necesaria en el caso de impulsos no modulados, el criterio utilizado es un valor de 20 dB por debajo de la cresta de la envolvente teórica del espectro. Los valores de la envolvente del espectro de los impulsos no modulados se han determinado utilizando técnicas de cálculo sencillas.

En el Cuadro 1 se indican las anchuras de banda necesarias calculadas para impulsos no modulados. En el Caso 1 (impulso trapezoidal), la anchura del impulso, t, es el tiempo entre los puntos de 50% de amplitud, y tr (tiempo de subida) es el tiempo que transcurre entre los puntos de 10% y 90% de amplitud. El tiempo de caída, tf, es igual al tiempo de subida, tr. En el Caso 2 el tiempo de establecimiento, tr, no es igual necesariamente al tiempo de caída, tf. El tiempo de caída es el tiempo entre los puntos 90% y 10% de amplitud. En el Caso 3 (impulso rectangular), t es la anchura del impulso.
ANEXO 3

Cálculos de anchura de banda necesarios en modulación digital

En las expresiones que determinan las anchuras de banda necesarias de las modulaciones de datos digitales (véase la Recomendación UIT-R SM.1138) figura un factor K que da cabida a los ajustes transaccionales de diseño de un sistema. Estos ajustes responden por lo general a decisiones sobre la potencia, la anchura de banda o la calidad de funcionamiento (BER) del sistema. Por ejemplo, si se emplean niveles de modulación más altos en los sistemas digitales de visibilidad directa, se aceptan mayores necesidades de potencia y para reducir las de anchura de banda. Las modulaciones digitales de nivel más alto, como MAQ-16, MAQ-64 y MAQ256, pueden transferir, para una cantidad de espectro dada, más bit/s que los niveles de modulación más bajos, pero requieren más potencia (es decir, mayor relación portadora/ ruido). Recíprocamente, en los sistemas por satélite, en los que la potencia a bordo es limitada, se aceptan mayores necesidades de espectro para reducir las de potencia, y se emplean modulaciones de nivel más bajo. Con frecuencia las señales digitales tienen que ser bastante filtradas para que se cumplan los requisitos de protección de canal adyacente.

El filtrado de las señales digitales puede realizarse como filtrado de premodulación de la señal del transmisor en la banda de base, o en otro u otros puntos del transmisor o del receptor. Compensa la adición de dicho filtrado, el aumento de la relación portadora/ruido del sistema C/N. Los valores numéricos del factor K dependen de la magnitud y perfil de la característica de selectividad del filtro. Las características de diseño del filtro se determinan con arreglo a cada caso particular. Por consiguiente, no resulta práctico ni ventajoso dar a K un valor numérico único en las fórmulas que determinan la anchura de banda necesaria.

En el Cuadro 2 figuran diversos ejemplos de valores de K correspondientes a distintas modulaciones digitales. Estos valores corresponden a espectros determinados mediante cálculo o medidos directamente. Se indican asimismo las fórmulas de anchura de banda necesaria empleadas, los valores de K y otros parámetros, como la potencia, la relación Eb /N0, y la BER. La fórmula de la anchura de banda necesaria, Bn, en MF digital se ha tomado de la Recomendación UIT-R SM.1138. R representa la velocidad binaria, S el número de estados de señalización, y D la desviación de frecuencia. La expresión de la anchura de banda necesaria en MDP se basa en el principio de que dicha anchura de banda debe ser un múltiplo de la velocidad de símbolos.



Las modulaciones MDM, MDMG y MF digital constituyen ejemplos de modulación de amplitud constante y fase continua. Estas señales de fase continua pueden considerarse como una modulación simultánea de fase y de frecuencia. Para este tipo de modulación podría utilizarse cualquiera de las fórmulas para la anchura de banda necesaria (frecuencia o fase). Como las señales están tipificadas por un índice de modulación (2D/R), en el Cuadro 2 se ha utilizado para dichas señales la expresión de la anchura de banda necesaria en el caso MDF. Asimismo, para la modulación MAQ se emplea la fórmula de anchura de banda necesaria del caso MDP. La razón de ello es que las señales MAQ-m son una suma estadística de m/2 señales MDP-2 con amplitudes diferentes, una velocidad binaria de (R/logm) y el mismo filtrado.


** La Comisión de Estudio 1 de Radiocomunicaciones introdujo algunas modificaciones redaccionales en esta Recomendación en 2018, de conformidad con la Resolución UIT-R 1.


Compartir con tus amigos:


La base de datos está protegida por derechos de autor ©composi.info 2017
enviar mensaje

    Página principal