Objetivo general



Descargar 95.5 Kb.
Fecha de conversión26.06.2018
Tamaño95.5 Kb.

UNIDAD Nº 6

CORRIENTE ELÉCTRICA II

OBJETIVO GENERAL

Determinar la corriente eléctrica como una composición de diversos elementos tanto microscópicos como la resistividad y la conductividad así como la visión macroscópica de la resistencia y conductancia y las distintas leyes que rigen a este campo de la ciencia como las leyes de Ohm Polliette y otros y explicar como la corriente se distribuye por medio de cables conductores y superconductores y describir el papel que juegan los aislantes de corriente eléctrica y la producción de potencia y trabajo.

OBJETIVOS ESPECÍFICOS



  • Describir la resistividad y conductividad como elementos inherentes en la materia misma desde el nivel atómico.

  • Explicar qué es la conductancia y la resistividad eléctrica.

  • Ejemplificar las leyes de Pouillet y Ohm y representarlas.

  • Explicar como se distribuye la corriente por medio de conductores y aislantes eléctricos.

  • Explicar el beneficio que el ser humano obtiene cuando la corriente eléctrica produce trabajo y potencia.

TABLA DE CONTENIDOS

  1. Visión microscópica: Resistividad Y Conductividad.

  2. Visión macroscópica: Resistencia Y Conductancia.

  3. Leyes De Pouillet Y Ohm.

  4. Distribución De La Corriente Eléctrica.

  5. La Corriente Eléctrica Produce Potencia Y Trabajo.

CONTENIDO Nº 1

VISIÓN MICROSCÓPICA: RESISTIVIDAD Y CONDUCTIVIDAD

Resistividad o resistencia específica.

La resistividad es una característica propia de un material medido, con unidades de ohmios–metro, que indica que tanto se opone éste (el material) al paso de la corriente.

La resistividad [ρ] (rho) se define como:

ρ = R *A / L

Donde:
- ρ es la resistividad medida en ohmios-metro
- R es el valor de la resistencia eléctrica en Ohmios
- l es la longitud del material medida en metros
- A es el área transversal medida en metros2

De la anterior fórmula se puede deducir que el valor de una resistencia, utilizada normalmente en electricidad y electrónica, depende en su construcción, de la resistividad (material con el que fue fabricado), su longitud, y su área transversal.

R = ρ * L / A

- A mayor longitud y menor área transversal del elemento, más resistencia


- A menor longitud y mayor área transversal del elemento, menos resistencia

Los valores típicos de resistividad de varios materiales a 23 °C son:

Material

Resistividad a 23°C
en ohmios - metro

Plata

1.59 × 10-8

Cobre

1.68 × 10-8

Oro

2.20 × 10-8

Aluminio

2.65 × 10-8

Tungsteno

5.6 × 10-8

Hierro

9.71 × 10-8

Acero

7.2 × 10-7

Platino

1.1 × 10-7

Plomo

2.2 × 10-7

Nicromio

1.50 × 10-6

Carbón

3.5 × 10-5

Germanio

4.6 × 10-1

Silicio

6.40 × 102

Piel humana

5.0 × 105 aproximadamente

Vidrio

1010 to 1014

Hule

1013 aproximadamente

Sulfuro

1015

Cuarzo

7.5 × 1017

La resistividad depende de la temperatura:

La resistividad de los metales aumenta al aumentar la temperatura al contrario de los semiconductores en donde este valor decrece.

El inverso de la resistividad se llama conductividad (σ) [sigma]
 


σ = 1 / ρ

 La Resistividad Eléctrica: Si se pasa una corriente eléctrica de I amperios por un objeto, y la potencia se reduce V voltios, la resistencia R del objeto se calcula por la ley de Ohm

Si este objeto es en forma del cilindro de largo L y sección A,

Donde ρ es la resistividad eléctrica de la materia. Se mide la resistividad eléctrica para medir la corriente I y la diferencia de la potencia V



Donde G es el factor geométrico que depende de la forma del objeto y la disposición de los electrodos utilizados para pasar la corriente y medir el voltaje. En la superficie de la tierra, el "objeto" es un plano infinito, donde los geofísicos utilizan varias configuraciones de electrodos.

Los minerales generalmente son aisladores eléctricos. Solamente los metales nativos, algunos óxidos y sulfuros con lustres metálicos, y la arcilla se clasifican como conductores. No obstante, el agua dentro de los poros de las piedras es conductor. Generalmente la resistividad eléctrica de las piedras y los suelos depende de la porosidad, su geometría, y la cantidad y cualidad de los fluidos que estén dentro de los poros.

Conductividad eléctrica


De Wikipedia, la enciclopedia libre

Saltar a navegación, búsqueda

La conductividad eléctrica es la capacidad de un cuerpo de permitir el paso de la corriente eléctrica a través de sí. También es definida como la propiedad natural característica de cada cuerpo que representa la facilidad con la que los electrones pueden pasar por él. Varía con la temperatura. Es una de las características más importantes de los materiales.

La conductividad es la inversa de la resistividad, por tanto, y su unidad es el S/m (siemens por metro).

Representación matemática

Usualmente la magnitud de la conductividad (σ) es la proporcionalidad entre el campo eléctrico y la densidad de corriente de conducción:

Conductividad en medios líquidos

La conductividad en medios líquidos (Disolución) está relacionada con la presencia de sales en solución, cuya disociación genera iones positivos y negativos capaces de transportar la energía eléctrica si se somete el líquido a un campo eléctrico. Estos conductores iónicos se denominan electrolitos o conductores electrolíticos.

Las determinaciones de la conductividad reciben el nombre de determinaciones conductométricas y tienen muchas aplicaciones como, por ejemplo:


  • En la electrólisis, ya que el consumo de energía eléctrica en este proceso depende en gran medida de ella.

  • En los estudios de laboratorio para determinar el contenido de sal de varias soluciones durante la evaporación del agua (por ejemplo en el agua de calderas o en la producción de leche condensada.

  • En el estudio de las basicidades de los ácidos, puesto que pueden ser determinadas por mediciones de la conductividad.

  • Para determinar las solubilidades de electrólitos escasamente solubles y para hallar concentraciones de electrólitos en soluciones por titulación.

La base de las determinaciones de la solubilidad es que las soluciones saturadas de electrólitos escasamente solubles pueden ser consideradas como infinitamente diluidas. Midiendo la conductividad específica de semejante solución y calculando la conductividad equivalente según ella, se halla la concentración del electrólito, es decir, su solubilidad.

Un método práctico sumamente importante es el de la titulación conductométrica, o sea la determinación de la concentración de un electrólito en solución por la medición de su conductividad durante la titulación. Este método resulta especialmente valioso para las soluciones turbias o fuertemente coloreadas que con frecuencia no pueden ser tituladas con el empleo de indicadores.

La conductividad eléctrica se utiliza para determinar la salinidad (contenido de sales) de suelos y substratos de cultivo, ya que se disuelven éstos en agua y se mide la conductividad del medio líquido resultante. Suele estar referenciada a 25 °C y el valor obtenido debe corregirse en función de la temperatura. Coexisten muchas unidades de expresión de la conductividad para este fin, aunque las más utilizadas son dS/m (deciSiemens por metro), mmhos/cm (milimhos por centímetro) y según los organismos de normalización europeos mS/m (miliSiemens por metro). El contenido de sales de un suelo o substrato también se puede expresar por la resistividad (se solía expresar así en Francia antes de la aplicación de las normas INEN).

Conductividad en medios sólidos

Según la teoría de bandas de energía en sólidos cristalinos (véase semiconductor), son materiales conductores aquellos en los que las bandas de valencia y conducción se superponen, formándose una nube de electrones libres causante de la corriente al someter al material a un campo eléctrico. Estos medios conductores se denominan conductores eléctricos.

La Comisión Electrotécnica Internacional definió como patrón de la conductividad eléctrica:



Un hilo de cobre de 1 metro de longitud y un gramo de masa, que da una resistencia de 0,15388 Ω a 20 °C al que asignó una conductividad eléctrica de 100% IACS (International Annealed Cooper Standard, Estándar Internacional de Cobre no Aleado). A toda aleación de cobre con una conductividad mayor que 100% IACS se le denomina de alta conductividad (H.C. por sus siglas inglesas).

Algunas conductividades eléctricas






Conductividad Eléctrica

(S·m-1)

Temperaturaa (°C)

Apuntes

Plata

63.01 × 106

20

La conductividad electrica más alta de cualquier metal

Cobre

59.6 × 106

20




Templado Cobre

58.0 × 106

20

Se refiere a 100 %IACS (Standard Internacional de Templado de Cobre, de sus siglas en inglés: International Annealed Copper Standard).

Aluminio

37.8 × 106

20




Agua de mar

5

23

Ver http://www.kayelaby.npl.co.uk/general_physics/2_7/2_7_9.html para más detalles sobre las distintas clases del agua marina.

5(S·m-1) para una salinidad promedio de 35 g/kg alrededor de 23(°C) Los derechos de autor del material enlazado se pueden consultar en http://www.kayelaby.npl.co.uk/copyright/



Agua potable

0.0005 a 0.05




Este rango de valores es típico del agua potable de alta calidad mas no es un indicador de la calidad del agua.

Agua desionizada

5.5 × 10-6




1.2 × 10-4 en agua sin gas; ver J. Phys. Chem. B 2005, 109, 1231-1238

CONTENIDO Nº 2

VISIÓN MACROSCÓPICA: RESISTENCIA Y CONDUCTANCIA


Resistencia eléctrica


De Wikipedia, la enciclopedia libre

Saltar a navegación, búsqueda

Se denomina resistencia eléctrica, R, de una sustancia, a la oposición que encuentra la corriente eléctrica durante su recorrido. Su valor viene dado en ohmios, se designa con la letra griega omega mayúscula (Ω), y se mide con el Ohmímetro. También se define como la propiedad de un objeto o sustancia de transformar energía eléctrica en otro tipo de energía de forma irreversible, generalmente calor.

Esta definición es válida para la corriente continua y para la corriente alterna cuando se trate de elementos resistivos puros, esto es, sin componente inductiva ni capacitiva. De existir estos componentes reactivos, la oposición presentada a la circulación de corriente recibe el nombre de impedancia.

Según sea la magnitud de esta oposición, las sustancias se clasifican en conductoras, aislantes y semiconductoras. Existen además ciertos materiales en los que, en determinadas condiciones de temperatura, aparece un fenómeno denominado superconductividad, en el que el valor de la resistencia es prácticamente nula.

Una resistencia ideal es un elemento pasivo que disipa energía en forma de calor según la Ley de Joule. También establece una relación de proporcionalidad entre la intensidad de corriente que la atraviesa y la tensión medible entre sus extremos, relación conocida como Ley de Ohm:

Donde i(t) es la Corriente eléctrica que atraviesa la resistencia de valor R y u(t) es la diferencia de potencial que se origina. En general, una resistencia real podrá tener diferente comportamiento en función del tipo de corriente que circule por ella.

Comportamiento en corriente continua

Una resistencia real en corriente continua (CC) se comporta prácticamente de la misma forma que si fuera ideal, esto es, transformando la energía eléctrica en calor. Su ecuación pasa a ser:

R = V/I


Que es la conocida ley de Ohm para CC.

Comportamiento en corriente alterna

Como se ha comentado, una resistencia real muestra un comportamiento diferente del que se observaría en una resistencia ideal si la intensidad que la atraviesa no es continua. En el caso de que la señal aplicada sea senoidal, corriente alterna (CA), a bajas frecuencias se observa que una resistencia real se comportará de forma muy similar a como lo haría en CC, siendo despreciables las diferencias. En altas frecuencias el comportamiento es diferente, aumentando en la medida en la que aumenta la frecuencia aplicada, lo que se explica fundamentalmente por los efectos inductivos que producen los materiales que conforman la resistencia real. Por ejemplo, en una resistencia de carbón los efectos inductivos sólo provienen de los propios terminales de conexión del dispositivo mientras que en una resistencia de tipo bobinado estos efectos se incrementan por el devanado de hilo resistivo alrededor del soporte cerámico, además de aparecer una cierta componente capacitiva si la frecuencia es especialmente elevada. En estos casos, para analizar los circuitos, la resistencia real se sustituye por una asociación serie formada por una resistencia ideal y por una bobina también ideal, aunque a veces también se les puede añadir un pequeño condensador ideal en paralelo con dicha asociación serie. En los conductores, además, aparecen otros efectos entre los que cabe destacar el efecto pelicular.

ACTIVIDAD: Se pide a los estudiantes definir los siguientes conceptos relacionados con la asociación de las resistencias.



  • Resistencias en serie.

  • Asociación en paralelo.

  • Asociación mixta

  • Asociación puente

  • Resistencias tipo estrella y triángulo.

ACTIVIDAD: CAPACITORES Y CONDENSADORES Y LEY DE FARAD. (TRAER RESISTENCIAS AL AULA Y EXPLICAR CADA UNA DE ELLAS)

QUÉ ES LA CONDUCTANCIA




La conductancia está directamente relacionada con la facilidad que ofrece un material cualquiera al paso de la corriente eléctrica. La conductancia es lo opuesto a la resistencia. A mayor conductancia la resistencia disminuye y viceversa, a mayor resistencia, menos conductancia, por lo que ambas son inversamente proporcionales.

Existen algunos materiales que conducen mejor la corriente que otros. Los mejores conductores son, sin duda alguna, los metales, principalmente el oro (Au) y la plata (Ag), pero por su alto costo en el mercado se prefiere utilizar, en primer lugar, el cobre (Cu) y, en segundo lugar, el aluminio (Al), por ser ambos metales buenos conductores de la electricidad y tener un costo mucho menor que el del oro y la plata.

Otros tipos de materiales, como el alambre nicromo (Ni-Cr, aleación de níquel y cromo), el constantán, la manganina, el carbón, etc. no son buenos conductores y ofrecen mayor resistencia al paso de la corriente eléctrica, por lo que son utilizados como tales, es decir, como “resistencias eléctricas” para producir calor fundamentalmente, o para controlar el paso de la corriente en los circuitos electrónicos.




Además de los conductores y las resistencias, existen otros materiales denominados semiconductores como, por ejemplo, el germanio y el silicio, que permiten el paso de la corriente en un sentido, pero lo impiden en el sentido opuesto. El silicio, sobre todo, se emplea desde hace años para fabricar diodos, transistores, circuitos integrados y microprocesadores, aprovechando sus propiedades semiconductoras.

Por otro lado podemos encontrar también materiales no conductores, que ofrecen total resistencia al flujo de la corriente eléctrica. En ese caso se encuentran el vidrio, el plástico, el PVC, la porcelana, la goma, etc., que se emplean como materiales aislantes en los circuitos eléctricos.

Si hacemos una comparación entre diferentes materiales como el cobre, nicromo, silicio y la porcelana y buscamos en una tabla sus coeficientes de resistividad a 20ºC, veremos que el cobre tiene 0,0172, el nicromo 1,5 y el silicio 1 000 · mm2 / m, mientras el coeficiente de resistividad de la porcelana es infinito.

CONTENIDO Nº 3

LEYES DE POUILLET Y OHM

LEY DE OHM

La ley básica del flujo de la corriente es la ley de Ohm, así llamada en honor a su descubridor, el físico alemán Georg Ohm. Según la ley de Ohm, la cantidad de corriente que fluye por un circuito formado por resistencias puras es directamente proporcional a la fuerza electromotriz aplicada al circuito, e inversamente proporcional a la resistencia total del circuito. Esta ley suele expresarse mediante la fórmula I = V/R, siendo I la intensidad de corriente en amperios, V la fuerza electromotriz en voltios y R la resistencia en ohmios. La ley de Ohm se aplica a todos los circuitos eléctricos, tanto a los de corriente continua (CC) como a los de corriente alterna (CA), aunque para el análisis de circuitos complejos y circuitos de CA deben emplearse principios adicionales que incluyen inductancias y capacitancias.

De acuerdo con la Ley de Ohm, el valor de la resistencia “R” se obtiene dividiendo el voltaje o tensión en volt “E” del circuito, por el valor de la intensidad “I” en ampere, como se muestra en el ejemplo siguiente:















Si representamos la conductancia eléctrica con la letra “G”(sabiendo que es lo opuesto a la resistencia y que podemos representarla matemáticamente como 1/R), es posible hallar su valor invirtiendo los valores de la tensión y la intensidad en la fórmula anterior, tal como se muestra a continuación:

















Por tanto, sustituyendo por “G” el resultado de la operación, tendremos:



 













O también:












Es decir, lo inverso a la resistencia.



El valor de la conductancia “G” de un material se indica en “siemens” y se identifica con la letra "S". Un siemens equivale a, Ω-1 o también a . 1/Ω



LEY DE POUILLET

 Al igual que la ley de Ohm, la ley de Pouillet es un resultado experimental que se resume en la expresión siguiente: R = L/A

La expresión anterior refleja el hecho de que la resistencia de un conductor es proporcional a su longitud L e inversamente proporcional al área de su sección transversal A. La constante de proporcionalidad se llama resistividad y depende de la naturaleza o tipo de sustancia y de la temperatura. En el SI de unidades se expresa en m. En la tabla siguiente se muestran las resistividades en m de algunas sustancias a temperatura ambiente.
ACTIVIDAD: INVESTIGAR ¿QUÉ ES LA FUERZA ELECTROMOTRIZ? Y ¿CÓMO SE REPRESENTA?
CONTENIDO Nº 4 pag. 87

DISTRIBUCIÓN DE LA CORRIENTE ELÉCTRICA

Los circuitos electrónicos en general, desde los mas sencillos a los más complejos, se construyen a partir de unos cuantos componentes básicos, una pequeña variedad de piezas en diferentes cantidades, nos sirven para construir los mas diversos proyectos. De estos componente, los resistores o resistencias son loas mas modestos, y a la vez, los mas utilizados.




Resistores

Prácticamente no existen esquemas electrónicos en los que no se vean una o más resistencias. Estos componentes tienen como función distribuir adecuadamente las tensiones y corrientes que circulan por el circuito. Su funcionamiento se basa en la dificultad que ofrecen al paso de la corriente eléctrica algunos materiales, generalmente con valores de resistividad altos. Para definir el valor de una resistencia se utiliza como unidad el Ohm, que se representa por la letra griega omega (Ω).


Casualmente, una ley física que lleva como nombre Ley de Ohm, es la que explica como se relacionan entre si tres valores fundamentales de la electricidad: la tensión, la corriente y la resistencia. La ley mencionada establece que la intensidad de la corriente eléctrica que circula por un resistor es directamente proporcional a la diferencia de potencial aplicada e inversamente proporcional a la resistencia del mismo, tal como lo expresa la fórmula siguiente:

I = V / R


En la que, si estamos empleando unidades del Sistema internacional, I representa la intensidad de la corriente medida en amperios (A), V la diferencia de potencial expresada en voltios (V), y R es el valor de nuestro resistor en ohmios (Ω).
Esta formula es todo lo que necesitamos conocer para saber como se comportara un resistor sometido a una diferencia de potencial, y como será la corriente que lo atraviese.
Actualmente, el proceso de fabricación de resistores se ha optimizado tanto, que se pueden comprar de a miles por unos pocos Euros.
A continuación, veremos como emplearlos, solos o combinados entre si.

Físicamente, los resistores más comunes consisten en un pequeño cilindro con dos terminales, uno en cada extremo. Para escribir el valor de su resistencia, se utilizan una serie de anillos de colores sobre su cuerpo que representa el valor en ohms.




Código de colores

Existen básicamente dos tipos de códigos, uno utiliza cinco bandas y el otro cinco.


En el código de cuatro bandas, los dos primeros anillos representan los dígitos que forman el valor base de la resistencia, el tercero el numero de ceros que es necesario añadir, y el cuarto el valor de la tolerancia.
En la figura al pie de este texto podemos ver un grafico que muestra el color correspondiente a cada valor.
Veamos con un ejemplo como se procede a determinar el valor de la resistencia de un resistor mirando sus bandas de colores. Si tomamos un resistor que tiene una banda marrón, una roja, una naranja y una dorada, su valor será 12000 ohms, con el 5% de tolerancia, dado que según la tabla de colores el marrón representa el “1”, el rojo un “2” y el naranja significa que se agregan tres ceros.
Los resistores con cinco bandas de colores se leen de la misma manera, pero teniendo en cuenta que las tres primeras son los dígitos que forman el valor base, la cuarta banda la cantidad de ceros a agregar y la quinta la tolerancia.
Si bien en un principio esta manera de rotular a los resistores pude parecer un poco confuso, se debe a que como el cuerpo del componente es redondo, si se escribiera su valor con números, podría darse el caso que al soldarlos en el circuito este valor quedara hacia abajo y no se pudiera leer. Al utilizar una banda que rodea todo el cuerpo del resistor, su valor es legible en cualquier posición, incluso en los casos en que parte del código se haya borrado. Con la habilidad que brinda la practica, es posible leer los valores de los resistores sin consultar para nada la tabla de colores.

CUESTIONARIO PARA ESTUDIO Y ANÁLISIS PARA SEGUNDO AÑO DE BACHILLERATO GENERAL DEL COLEGIO BAUTISTA DE USULUTÁN.



  1. ¿Cuáles son los tres elementos que son objeto de medición en un circuito eléctrico?

  2. ¿Qué es un resistor? Y ¿Cuál es su propósito?

  3. ¿Qué es un Ohmio?

  4. ¿Cuál es la función de una resistencia en un circuito eléctrico?

  5. ¿Qué significan los colores de las resistencias?

  6. ¿Cómo se llama el instrumento que sirve para medir el paso de corriente por una resistencia?

  7. ¿Cuáles son los símbolos que se utilizan para representar las resistencias en un diagrama?

  8. Mencione ¿Cuáles son las asociaciones más comunes que se dan en los circuitos eléctricos?

  9. ¿Qué es la intensidad de corriente?

  10. ¿Cómo se llama el instrumento que sirve para medir la existencia de corriente en un circuito?

  11. ¿Cómo se le llama a un galvanómetro cuando éste está graduado?

  12. Describa que son los miliamperímetros y los micro amperímetros.

CONTENIDO Nº 5



LA CORRIENTE ELÉCTRICA PRODUCE TRABAJO Y POTENCIA
LA POTENCIA ELÉCTRICA

Para entender qué es la potencia eléctrica es necesario conocer primeramente el concepto de “energía”, que no es más que la capacidad que tiene un mecanismo o dispositivo eléctrico cualquiera para realizar un trabajo.

Cuando conectamos un equipo o consumidor eléctrico a un circuito alimentado por una fuente de fuerza electromotriz (F.E.M), como puede ser una batería, la energía eléctrica que suministra fluye por el conductor, permitiendo que, por ejemplo, una bombilla de alumbrado, transforme esa energía en luz y calor, o un motor pueda mover una maquinaria.

De acuerdo con la definición de la física, “la energía ni se crea ni se destruye, se transforma”. En el caso de la energía eléctrica esa transformación se manifiesta en la obtención de luz, calor, frío, movimiento (en un motor), o en otro trabajo útil que realice cualquier dispositivo conectado a un circuito eléctrico cerrado.


La energía utilizada para realizar un trabajo cualquiera, se mide en “joule” y se representa con la letra “J”.

Potencia es la velocidad a la que se consume la energía. Si la energía fuese un líquido, la potencia sería los litros por segundo que vierte el depósito que lo contiene. La potencia se mide en joule por segundo (J/seg) y se representa con la letra “P”.

Un J/seg equivale a 1 watt (W), por tanto, cuando se consume 1 joule de potencia en un segundo, estamos gastando o consumiendo 1 watt de energía eléctrica.

La unidad de medida de la potencia eléctrica “P” es el “watt”, y se representa con la letra “W”.


ACTIVIDAD: EFECTUAR LOS EJERCICIOS PROPUESTOS Y DESARROLLADOS EN LA PÁGINA 101 Y 102 DEL LIBRO DE CIENCIAS 2º AÑO.
FIN DE UNIDAD

Compartir con tus amigos:


La base de datos está protegida por derechos de autor ©composi.info 2017
enviar mensaje

    Página principal