Nicolás Copérnico (1473-1543), astrónomo polaco, conocido por su teoría según la cual el Sol se encontraba en el centro del Un



Descargar 247.18 Kb.
Página5/5
Fecha de conversión18.11.2018
Tamaño247.18 Kb.
1   2   3   4   5
E = mc2 que relaciona la energía (E) con la masa (m) y la velocidad de la luz (c). Como el valor de c es muy elevado, una pequeña masa equivale a una gran cantidad de energía.
PRIMERAS REACCIONES A EINSTEIN
La dificultad de otros científicos para aceptar la teoría de Einstein no estribaba en sus complejos cálculos matemáticos y su dificultad técnica, sino que partía del concepto que tenía Einstein de las buenas teorías y su relación con la experimentación. Aunque sostenía que la única fuente del conocimiento era la experiencia, también pensaba que las teorías científicas eran creaciones libres de una aguda intuición física, y que las premisas en que se basaban no podían aplicarse de un modo lógico al experimento. Una buena teoría sería, pues, aquella que necesitara los mínimos postulados para explicar un hecho físico. Esta escasez de postulados, característica de la obra de Einstein, provocó que su trabajo no fuera accesible para sus colegas, que le dejaron solo.
Aun así, tenía importantes seguidores. Su primer defensor fue el físico alemán Max Planck. Einstein permaneció cuatro años en la oficina de patentes, y luego empezó a destacar dentro de la comunidad científica, y así ascendió en el mundo académico de lengua alemana. Primero fue a la Universidad de Zurich en 1909; dos años más tarde se trasladó a la Universidad de Praga, de lengua alemana, y en 1912 regresó al Instituto Politécnico Nacional de Zurich. Finalmente, en 1913 fue nombrado director del Instituto de Física Kaiser Guillermo en Berlín.
LA TEORÍA GENERAL DE LA RELATIVIDAD
Antes de dejar la oficina de patentes, en 1907, Einstein ya trabajaba en la extensión y generalización de la teoría de la relatividad a todo sistema de coordenadas. Empezó con el enunciado del principio de equivalencia según el cual los campos gravitacionales son equivalentes a las aceleraciones del sistema de referencia. De este modo, una persona que viajara en un elevador o ascensor no podría en principio determinar si la fuerza que actúa sobre ella se debe a la gravitación o a la aceleración constante del ascensor. Esta teoría general completa de la relatividad no fue publicada hasta 1916. De acuerdo con ella, las interacciones entre los cuerpos, que hasta entonces se atribuían a fuerzas gravitacionales, se explican por la influencia de aquéllos sobre la geometría espacio-tiempo (espacio de cuatro dimensiones, una abstracción matemática en la que el tiempo se une, como cuarta dimensión, a las tres dimensiones euclídeas).
Basándose en la teoría general de la relatividad, Einstein pudo entender las variaciones hasta entonces inexplicables del movimiento de rotación de los planetas y logró predecir la inclinación de la luz de las estrellas al aproximarse a cuerpos como el Sol. La confirmación de este fenómeno durante un eclipse de Sol en 1919 fue toda una noticia y su fama se extendió por todo el mundo.
Einstein consagró gran parte del resto de su vida a generalizar su teoría. Su último trabajo, la teoría del campo unificado, que no tuvo demasiado éxito, consistía en un intento de explicar todas las interacciones físicas, incluidas la interacción electromagnética y las interacciones nucleares fuerte y débil, a través de la modificación de la geometría del espacio-tiempo entre entidades interactivas.
La mayoría de sus colegas pensaron que sus esfuerzos iban en dirección equivocada. Entre 1915 y 1930 la corriente principal entre los físicos era el desarrollo de una nueva concepción del carácter fundamental de la materia, conocida como la teoría cuántica. Esta teoría contempla la característica de la dualidad onda-partícula (la luz presenta las propiedades de una partícula, así como las de una onda), que Einstein había intuido como necesaria, y el principio de incertidumbre, que establece que la exactitud de los procedimientos de medición es limitada. Además, esta teoría suponía un rechazo fundamental a la noción estricta de causalidad. Sin embargo, Einstein mantuvo una posición crítica respecto a estas tesis hasta el final de su vida. “Dios no juega a los dados con el mundo”, llegó a decir.
CIUDADANO DEL MUNDO
A partir de 1919, Einstein recibió el reconocimiento internacional y acumuló honores y premios de distintas sociedades científicas, como el Nobel de Física en 1921. Sus visitas a países de todo el mundo, como la que realizó a España en 1923, impulsada por el matemático Julio Rey Pastor, o las que realizó a Argentina, Uruguay y Brasil en 1925, eran un acontecimiento; le seguían fotógrafos y periodistas.
El pacifismo y el sionismo fueron los dos movimientos sociales que recibieron todo su apoyo. Durante la I Guerra Mundial, Einstein fue uno de los pocos académicos alemanes que condenaron públicamente la participación de Alemania en el conflicto.

Después de la guerra siguió con sus actividades pacifistas y sionistas, por lo que fue blanco de los ataques de grupos antisionistas y de derechas alemanes. Sus teorías llegaron a ser ridiculizadas en público, especialmente la de la relatividad.


Cuando Hitler llegó al poder en 1933, Einstein abandonó Alemania y emigró a Estados Unidos, donde ocupó un puesto en el Instituto de Estudios Superiores en Princeton, Nueva Jersey. Siguió con sus actividades en favor del sionismo pero abandonó su postura pacifista anterior a la vista de la amenaza que suponía para la humanidad el régimen nazi en Alemania.
En 1939 Einstein participó junto con otros físicos en la redacción de una carta dirigida al presidente Franklin D. Roosevelt en la que se pedía la creación de un programa de investigación sobre las reacciones en cadena. La carta, que sólo iba firmada por Einstein, consiguió acelerar la fabricación de la bomba atómica, en la que él no participó ni supo de su finalización. En 1945, cuando ya era evidente la existencia de la bomba, Einstein volvió a escribir al presidente para intentar disuadirlo de utilizar el arma nuclear.
Después de la guerra, Einstein se convirtió en activista del desarme internacional y del gobierno mundial, y siguió contribuyendo a la causa del sionismo, pero declinó una oferta de los líderes del Estado de Israel para ocupar el cargo de presidente. A finales de la década de 1940 y principios de la de 1950, defendió en Estados Unidos la necesidad de que los intelectuales del país hicieran todo lo posible para mantener la libertad política. Einstein murió el 18 de abril de 1955 en Princeton.
Los esfuerzos de Einstein en apoyo de causas sociales fueron a menudo percibidos como poco realistas. Sus propuestas nacían de razonamientos cuidadosamente elaborados. Al igual que sus teorías, eran fruto de una asombrosa intuición basada en cuidadosas y astutas valoraciones y en la observación. A pesar de su actividad en favor de causas políticas y sociales, la ciencia siempre ocupó el primer lugar en su vida, pues, como solía decir, sólo el descubrimiento de la naturaleza del Universo tiene un sentido duradero. Entre sus obras se encuentran La relatividad: la teoría especial y restringida (1916); Sobre el sionismo (1931); Los constructores del Universo (1932); ¿Por qué la guerra? (1933), con Sigmund Freud; El mundo como yo lo veo (1934); La evolución de la Física (1938) con el físico polaco Leopold Infeld, y En mis últimos años (1950). La colección de los artículos de Einstein comenzó a publicarse en 1987 en varios volúmenes.

Werner Karl Heisenberg (1901-1976), físico y Premio Nobel alemán, que desarrolló un sistema de mecánica cuántica y cuya indeterminación o principio de incertidumbre ha ejercido una profunda influencia en la física y en la filosofía del siglo XX.


Heisenberg nació el 5 de diciembre de 1901 en Würzburgo y estudió en la Universidad de Munich. En 1923 fue ayudante del físico alemán Max Born en la Universidad de Gotinga, y desde 1924 a 1927 obtuvo una beca de la Fundación Rockefeller para trabajar con el físico danés Niels Bohr en la Universidad de Copenhague. En 1927 fue nombrado profesor de física teórica en la Universidad de Leipzig. Después fue profesor en las universidades de Berlín (1941-1945), Gotinga (1946-1958) y Munich (1958-1976). En 1941 ocupó el cargo de director del Instituto Kaiser Wilhelm de Química Física (que en 1946 pasó a llamarse Instituto Max Planck de Física).
Estuvo a cargo de la investigación científica del proyecto de la bomba atómica alemana durante la II Guerra Mundial. Bajo su dirección se intentó construir un reactor nuclear en el que la reacción en cadena se llevara a cabo con tanta rapidez que produjera una explosión, pero estos intentos no alcanzaron éxito. Estuvo preso en Inglaterra después de la guerra.

Heisenberg, uno de los primeros físicos teóricos del mundo, realizó sus aportaciones más importantes en la teoría de la estructura atómica. En 1925 comenzó a desarrollar un sistema de mecánica cuántica, denominado mecánica matricial, en el que la formulación matemática se basaba en las frecuencias y amplitudes de las radiaciones absorbidas y emitidas por el átomo y en los niveles de energía del sistema atómico. El principio de incertidumbre desempeñó un importante papel en el desarrollo de la mecánica cuántica y en el progreso del pensamiento filosófico moderno. En 1932, Heisenberg fue galardonado con el Premio Nobel de Física. Entre sus numerosos escritos se encuentran Die physikalischen Prinzipien del Quantentheori (Los principios físicos de la teoría cuántica, 1930), Cosmic Radiation (Radiación cósmica, 1946), Physics and Philosophy (Física y filosofía, 1958) e Introduction to the Unified Theory of Elementary Particles (Introducción a la teoría unificada de las partículas elementales, 1967).


John Broadus Watson (1878-1958), psicólogo estadounidense, reconocido como el fundador y principal representante del conductismo.


Nacido en Greenville, Carolina del Sur, estudió en la Universidad Furman y en la de Chicago. Desde 1908 hasta 1920 fue profesor y director del laboratorio de psicología de la Universidad Johns Hopkins de Baltimore. En 1920 abandonó su carrera académica y se dedicó a escribir ensayos sobre su visión de la psicología; también continuó sus investigaciones, sobre todo con la observación de niños. En 1913 Watson fundó el conductismo con su ensayo La psicología como la ve el conductista, movimiento que reducía la psicología al estudio de la conducta externa observable de forma objetiva, cuyas unidades son las conexiones innatas o adquiridas por condicionamiento entre el estímulo y la respuesta. Watson no creía que la conciencia fuera objeto de estudio de la psicología y explicó el pensamiento como un “habla subvocal”, es decir, que surge de los movimientos de la lengua y las cuerdas vocales. En su obra El comportamiento (1914), afirma: “Dadme a una docena de niños sanos y bien formados y mi propio mundo específico para criarlos, y os garantizo que elegiré uno al azar y lo educaré de manera que se convierta en un especialista en cualquier ramo que yo elija (...), cualesquiera que sean sus aptitudes, inclinaciones, propósitos, talento, o independientemente de quienes sean sus ascendientes”.
Otras de sus obras son: La educación animal (1903), La psicología desde el punto de vista del conductismo (1919), El conductismo (1925) y La atención psicológica del bebé y del niño (1928).

Pierre Teilhard de Chardin (1881-1955), sacerdote católico, paleontólogo, geólogo, filósofo y teólogo francés, autor de una interpretación evolucionista de la humanidad y del Universo compatible con el cristianismo.


VIDA
Nació el 1 de mayo de 1881 en Sarcenat, cerca de Clermont-Ferrand. Tras ingresar en la Compañía de Jesús (1899), en 1911 fue ordenado sacerdote. Posteriormente estudió en la Sorbona de París, centro por el que se doctoró en Paleontología en 1922. Su carrera docente en el Instituto Católico de París se vio interrumpida al considerar sus superiores religiosos que sus opiniones eran heterodoxas. Permaneció en China durante casi 20 años, salvo escasos intervalos, realizando investigaciones paleontológicas y reflexionando sobre temas filosóficos. Participó en las excavaciones que tuvieron como resultado el descubrimiento de los restos del entonces denominado Sinanthropus pekinensis (hombre de Pekín). Desde 1952 fue miembro de la fundación Wenner Gren para la investigación paleontológica de Nueva York, ciudad en la que, el 10 de abril de 1955, falleció.
PENSAMIENTO
La teoría científica de la evolución es la clave del pensamiento de Teilhard. La evolución, escribió, “es una condición general que de ahora en adelante todas las teorías, hipótesis y sistemas deben convenir y satisfacer si quieren ser coherentes y verdaderas. La evolución es la luz que ilumina todos los hechos...”. Su obra principal, El fenómeno humano (escrita entre 1938 y 1940, no publicada hasta 1955), expone una visión evolutiva razonada desde una perspectiva tanto científica como religiosa. Teilhard, para quien la materia siempre ha obedecido a “esa gran ley de la biología... la ley de la ‘complicación’”, interpretó la evolución como un proceso deliberado en el que la materia y la energía del Universo han estado cambiando de un modo continuo en la dirección de un incremento de la complejidad. Con la llegada del hombre, dijo, el desarrollo evolutivo entró en una nueva dimensión. De la biosfera, que es la parte de la Tierra donde se desarrollan los seres vivos, emergió la noosfera, una capa espiritual que rodea el planeta. Esta capa mental, o conciencia humana, genera disposiciones sociales de mayor complejidad que a su vez dan origen a conciencias cada vez más profundas. Por último, el proceso evolutivo culmina con la convergencia de lo espiritual y lo material en una superconciencia que Teilhard denominó el punto Omega. Este Dios-Omega, cuya manifestación más evidente se encuentra en el Jesucristo universal, ejerce una atracción por medio de su amor dirigiendo así todo el proceso evolutivo.
Otra obra importante de Teilhard es El ambiente divino (1957).

Louis Victor de Broglie (1892-1987), físico y premio Nobel francés, que contribuyó de manera fundamental al desarrollo de la teoría cuántica. De Broglie nació en Dieppe y estudió en la Universidad de París. Trató de racionalizar la doble naturaleza de la materia y la energía, comprobando que las dos están compuestas de corpúsculos y tienen propiedades ondulatorias. Por su descubrimiento de la naturaleza ondulatoria de los electrones (1924), recibió el Premio Nobel de Física en 1929. Fue elegido miembro de la Academia de Ciencias (1933) y de la Academia Francesa (1943). Fue nombrado profesor de física teórica en la Universidad de París (1928), secretario permanente de la Academia de Ciencias (1942) y consejero de la Comisión de Energía Atómica Francesa (1945). Entre sus obras destacan La física nueva y los cuantos (1937), Continuidad y discontinuidad en física moderna (1941) y Física y microfísica (1947).


Dualidad onda-corpúsculo
Posesión de propiedades tanto ondulatorias como corpusculares por parte de los objetos subatómicos. El principio fundamental de la teoría cuántica es que una entidad que estamos acostumbrados a considerar como una partícula (por ejemplo, un electrón, con un momento lineal p) puede comportarse también como una onda, mientras que otras entidades que solemos concebir como ondas (por ejemplo, la luz, con una longitud de onda ?) también pueden describirse como corpúsculos (en este caso, fotones). La longitud de onda ? y el momento lineal p de una entidad cuántica están relacionados por la ecuación p? = h, donde h es una constante conocida como constante de Planck.
Esta dualidad onda-corpúsculo se aprecia especialmente bien en los experimentos de ‘doble rendija’, en los que un cañón de partículas dispara electrones o fotones (uno cada vez) a través de un par de agujeros en una barrera, tras lo que son detectados en una pantalla situada al otro lado. En ambos casos, lo que sale del cañón y lo que llega a la pantalla detectora son partículas, y cada una marca un punto individual en la pantalla. No obstante, la figura global que se acumula en la pantalla a medida que se disparan más y más corpúsculos a través de los dos agujeros es un diagrama de interferencia formado por franjas claras y oscuras, que sólo pueden explicarse como resultado de ondas que pasan por ambos agujeros de la barrera e interfieren entre sí. Esto se expresa en el aforismo de que las entidades cuánticas “viajan como ondas pero llegan como partículas”.

Norbert Wiener (1894-1964), matemático estadounidense, fundador de la cibernética, el estudio del control y la comunicación en las máquinas, los animales y las organizaciones. Nació en Columbia, Missouri, y estudió en el Tufts College, y en las universidades de Cornell, Harvard, Cambridge, Gotinga y Columbia. Fue profesor auxiliar de matemáticas en el Instituto de Tecnología de Massachusetts en 1919 y desde 1932 a 1960 profesor titular.


Wiener se especializó en matemáticas y en física matemática. Durante la II Guerra Mundial, mientras se dedicaba a la investigación de técnicas de defensa antiaérea, se interesó por el cálculo automático y la teoría de la realimentación. De este modo fundó la ciencia de la cibernética, que trata no sólo del control automático de la maquinaria por computadoras y otros aparatos electrónicos, sino también del estudio del cerebro y del sistema nervioso humano y la relación entre los dos sistemas de comunicación y control. Resumió sus teorías en Cibernética (1948) y también escribió The Human Use of Human Beings (1950), Nonlinear Problems of Randon Theory (1958) y God and Golem, Inc. (1964).
Cibernética
Ciencia interdisciplinar que trata de los sistemas de comunicación y control en los organismos vivos, las máquinas y las organizaciones. El término cibernética, que proviene del griego kyberneees (‘timonel’ o ‘gobernador’), fue aplicado por primera vez en 1948 por el matemático estadounidense Norbert Wiener a la teoría de los mecanismos de control.
La cibernética se desarrolló como investigación de las técnicas por las cuales la información se transforma en la actuación deseada. Esta ciencia surgió de los problemas planteados durante la II Guerra Mundial al desarrollar los denominados cerebros electrónicos y los mecanismos de control automático para los equipos militares como los visores de bombardeo.
Esta ciencia contempla de igual forma los sistemas de comunicación y control de los organismos vivos que los de las máquinas. Para obtener la respuesta deseada en un organismo humano o en un dispositivo mecánico, habrá que proporcionarle, como guía para acciones futuras, la información relativa a los resultados reales de la acción prevista. En el cuerpo humano, el cerebro y el sistema nervioso coordinan dicha información, que sirve para determinar una futura línea de conducta; los mecanismos de control y de autocorrección en las máquinas sirven para lo mismo. El principio se conoce como feedback (realimentación), y constituye el concepto fundamental de la automatización.
Según la teoría de la información, uno de los principios básicos de la cibernética establece que la información es estadística por naturaleza y se mide de acuerdo con las leyes de la probabilidad. En este sentido, la información es concebida como una medida de la libertad de elección implícita en la selección. A medida que aumenta la libertad de elección, disminuye la probabilidad de que sea elegido un determinado mensaje. La medida de la probabilidad se conoce como entropía. De acuerdo con la segunda ley de la termodinámica, en los procesos naturales existe una tendencia hacia un estado de desorganización, o caos, que se produce sin ninguna intervención o control. En consecuencia, de acuerdo con los principios de la cibernética, el orden (disminución de la entropía) es lo menos probable, y el caos (aumento de la entropía) es lo más probable. La conducta intencionada en las personas o en las máquinas exige mecanismos de control que mantengan el orden, contrarrestando la tendencia natural hacia la desorganización.
La cibernética también se aplica al estudio de la psicología, la inteligencia artificial, los servomecanismos, la economía, la neurofisiología, la ingeniería de sistemas y al de los sistemas sociales. La palabra cibernética ha dejado de identificar un área independiente de estudio y la mayor parte de la actividad investigadora se centra ahora en el estudio y diseño de redes neurales artificiales.

Compartir con tus amigos:
1   2   3   4   5


La base de datos está protegida por derechos de autor ©composi.info 2017
enviar mensaje

    Página principal