Los gases nobles



Descargar 0.89 Mb.
Página7/35
Fecha de conversión12.11.2017
Tamaño0.89 Mb.
1   2   3   4   5   6   7   8   9   10   ...   35

La respuesta de Ramsay


Rayleigh estaba casi enfebrecido a causa de la frustración y sentía que había llegado a un callejón sin salida. Quizá lo que se necesitaba era un nuevo acercamiento; las ideas de algún hombre que no se hubiese estancado tras una larga y agotadora concentración sobre el problema.

Incluso mientras todavía estaba llevando a cabo sus experimentos, publicó una carta, el 29 de septiembre de 1892, en un número de la revista científica inglesa «Nature». En esta carta explicaba la situación con todo detalle, y solicitaba sugerencias. No recibió ninguna.

Sin embargo, en 1893, Rayleigh recibió una carta de un químico escocés, William Ramsay (1852-1916). Ramsay estaba interesado en el tema, ya había estado en contacto con Rayleigh anteriormente sobre este tema, y ahora solicitaba el permiso de Rayleigh para continuar con sus propias tesis acerca del problema de la densidad del nitrógeno. Rayleigh concedió gustosamente su permiso.

Ramsay razonaba que, puesto que el problema radicaba en el nitrógeno atmosférico, tenía que contener alguna impureza más densa que el propio nitrógeno y que debía diferir en sus propiedades químicas.

El nitrógeno molecular, aunque casi totalmente inerte, reaccionaba con magnesio al rojo vivo para formar nitruro de magnesio. La impureza puede también combinarse con el magnesio; pero de ser así, casi con toda seguridad que lo haría, o bien mucho antes o con menos rapidez que el nitrógeno. Si la impureza se combinaba más rápidamente de como lo hacía el nitrógeno, entonces el nitrógeno atmosférico sería purgado de la impureza, y la densidad de esta porción que no hubiese reaccionado todavía descendería al valor apropiado mostrado por el nitrógeno amoniacal puro.

Si, en cambio, la impureza densa reaccionaba con el magnesio más lentamente que lo hacía el nitrógeno, se acumularía en el nitrógeno que todavía no había reaccionado y la densidad del residuo se elevaría aun más.

Con esta alternativa en su mente, Ramsay pasó un amplio volumen de nitrógeno atmosférico sobre magnesio al rojo vivo. Cuando tan sólo le quedó una pequeña cantidad de gas, midió su densidad y halló que era un 7% (!) más elevada que la del nitrógeno amoniacal puro. La impureza, cualquiera que fuese su naturaleza, estaba reaccionando con el magnesio al rojo vivo menos rápidamente que el nitrógeno.

Esto era más bien notable. El nitrógeno era el gas menos activo conocido por entonces; pero ahora aparecía un gas que parecía todavía menos activo.

Esto le recordó a Ramsay el antiguo experimento de Cavendish efectuado un siglo antes. Cavendish había aislado una pequeña cantidad de impurezas del nitrógeno atmosférico en condiciones que indicaban que la impureza era incluso menos activa que el nitrógeno.

Ramsay decidió repetir dicho experimento. Empleó chispas eléctricas para combinar nitrógeno y oxígeno, y también él, como Cavendish, se encontró al final con una pequeña burbuja que no se combinaba con el oxígeno. Quedó demostrado que Cavendish había tenido razón. Ramsay terminó incluso con casi la misma cantidad de impurezas.

Ramsay avanzó un paso más que Cavendish, ya que determinó la densidad de la impureza. Era aproximadamente un 40% más densa que el nitrógeno. Entonces, para aclarar largas dudas, Ramsay empleó un instrumento que no estuvo al alcance de Cavendish. Calentó el gas y estudió su luz con el espectroscopio. Sus líneas aparecieron en posiciones como las de ningún elemento conocido y, en particular, no se parecían en absoluto a las del nitrógeno.

En mayo de 1894, Ramsay escribió a Rayleigh, informándole de los detalles de su trabajo. Rayleigh confirmó los resultados repitiendo los experimentos, y, en agosto de 1894, los dos juntos anunciaron el descubrimiento de un nuevo elemento.

Debido a que el nuevo elemento parecía completamente inerte y no podía, hasta donde ellos podían afirmar, combinarse con cualquier otra sustancia, lo llamaron argón, derivada de la palabra griega argos, que significa inactivo, inerte. Como es lógico suponer, las anteriores nociones de la composición de la atmósfera tuvieron que ser revisadas (véase tabla 2).


Tabla 2. Composición del aire (definida en 1894)

Gas

Porcentaje por volumen

Nitrógeno

78

Oxígeno

21

Argón

1

Bióxido de carbono

0,04

El rompecabezas de Rayleigh quedaba por completo resuelto. Cuando el nitrógeno es preparado a partir del aire mediante el simple procedimiento de eliminar el oxígeno, el argón permanece y su mayor densidad eleva la densidad absoluta de la mezcla. Por otra parte, puesto que el argón no se combina con otras sustancias, los compuestos de nitrógeno, sin embargo, formados, no contienen argón. Por tanto, cuando el nitrógeno molecular se forma de cualquier compuesto nitrogenado, sólo se obtiene nitrógeno y ningún argón. O sea, el nitrógeno amoniacal puro tiene la verdadera densidad del nitrógeno, un 0,5% inferior al del nitrógeno atmosférico contaminado por el argón.

3. LA FAMILIA DEL ARGÓN

La tabla de Mendeléiev


Por tanto, queda perfectamente claro que el gas de Cavendish era argón, y que Cavendish tuvo una muestra de argón a su alcance más de un siglo antes de su formal descubrimiento. Mirando hacia atrás, ya pasada la ocasión, parece lamentable que el descubrimiento de Cavendish fuese ignorado. Por otra parte, la pérdida para la ciencia no fue tan grande como pudo haber sido.

Con mucha frecuencia, cuando se ignora un descubrimiento científico es porque se adelantó a su tiempo. Con esto quiero indicar que otros aspectos de la ciencia todavía no han avanzado hasta el punto de que el descubrimiento pueda ser utilizado adecuadamente. Los científicos, al no saber qué hacer con un descubrimiento que parece desembocar en un callejón sin salida, muestran tendencia a dedicarse a otros descubrimientos que pueden desarrollar y emplear convenientemente.

Si los químicos en general hubiesen reconocido el hecho de que Cavendish había descubierto un nuevo gas inerte, habrían adquirido el conocimiento del gas, pero nada más. El estado de la química, en 1785, no les podía permitir continuar más adelante. Ni siquiera les hubiera permitido preparar el nuevo gas en cantidad.

Sin embargo, en 1894 se había desarrollado una nueva perspectiva de los elementos, que mostraban el camino para lógicos pasos adicionales y nuevos descubrimientos. El argón era de tanta importancia para las teorías químicas de 1894 que su descubrimiento fue seguido con anhelo y beneficiosamente, lo cual no habría sido posible en 1785.

La utilización apropiada del descubrimiento del argón fue posible como resultado de los trabajos de un químico ruso, Dmitri Ivánovich Mendeléiev (1834-1907).

En 1869, puso orden en la lista de elementos. Demostró que si los elementos eran dispuestos en forma tabulada de acuerdo con su peso molecular, determinadas propiedades variarían de un modo regular y periódico, y elementos similares deberían caer en columnas en la tabla. Esto se llamó tabla periódica de los elementos.

Una de estas propiedades regularmente variables es la valencia, un término empleado para representar el poder de combinación de diferentes tipos de átomos. («Valencia» se deriva de la palabra latina valens, valer). Así, un átomo del elemento sodio nunca se combina con más de un átomo de cualquier clase. Por consiguiente, la valencia del sodio es 1. Un átomo de calcio se combina o fija con otros dos átomos de un elemento; un átomo de aluminio se puede combinar con tres; un átomo de estaño con cuatro. En consecuencia, la valencia del calcio es 2; la del aluminio es 3, y la del estaño, 4.

Ahora supongamos que relacionamos los elementos conocidos en 1894 según el orden de su peso atómico e incluimos la valencia de cada uno. Para evitar ciertas complicaciones que se presentan cuando los pesos atómicos alcanzan valores superiores a 45, relacionaremos solamente los dieciocho primeros elementos. Será suficiente para aclarar la cuestión (véase tabla 3).



Tabla 3. La valencia de los elementos con referencia
al peso atómico


Elemento

Peso atómico
aproximado


Valencia

Hidrógeno

1,0

1

Litio

6,9

1

Berilio

9,0

2

Boro

10,8

3

Carbono

12,8

4

Nitrógeno

14,0

3

Oxígeno

16,0

2

Flúor

19,0

1

Sodio

23,0

1

Magnesio

24,3

2

Aluminio

27,0

3

Silicio

28,1

4

Fósforo

31,0

3

Azufre

32,1

2

Cloro

35,5

1

Potasio

39,1

1

Calcio

40,1

2

Escandio

45,0

3

Como puede observarse en dicha tabla, el valor de la valencia se mueve arriba y abajo con un ritmo muy claro que parece no dejar brechas. ¿Cómo puede un nuevo elemento encajar en semejante lista sin trastocar el ritmo? (Antes de 1869, los nuevos elementos eran colocados en la lista sin que se hiciesen tales preguntas, pero después de 1869 estas preguntas tenían que ser planteadas).

Una idea surgió de inmediato. Puesto que el argón parecía completamente inerte y sus átomos no se fijaban con ningún otro, podía asegurársele una valencia de cero. Un elemento con una valencia de 0 podía entonces ser situado en el esquema entre elementos contiguos con valencias de 1. El esquema regular de valencia ya no sería entonces 4, 3, 2, 1, 1, 2, 3, 4, sino 4, 3, 2, 1, 0, 1, 2, 3, 4. El ritmo no quedaba trastornado en absoluto; en realidad, había mejorado.

No obstante, ¿dónde podía ser incluido el argón en la lista? En la corta lista de dieciocho elementos expuestos en la tabla 3 hay tres pares de elementos contiguos con valencias de 1: hidrógeno-litio, flúor-sodio y cloro-potasio. Otros aparecen más adelante en la lista completa de elementos. ¿Entre cuáles de estos pares podría colocarse el argón?

Podemos guiarnos por el peso atómico del argón, el cual cabe determinarlo por su densidad. La densidad del argón es 1,425 mayor que la del nitrógeno. Por lo tanto, la molécula de argón debe pesar 1,425 veces más que la molécula de nitrógeno. Sabemos que el nitrógeno está formado por dos átomos de nitrógeno; lo que necesitamos saber, a continuación, es cuántos átomos de argón se encuentran en la molécula de argón.

Se averiguó que la «molécula» de argón constaba de un solo átomo. El argón era un gas monoatómico. Esto constituyó otra sorpresa para los químicos. Los otros elementos gaseosos —hidrógeno, nitrógeno, oxígeno, flúor y cloro— eran todos ellos gases biatómicos, con moléculas formadas cada una de dos átomos. El argón fue la primera excepción. Aparentemente, sus átomos eran tan inertes que no podían combinarse ni siquiera consigo mismos (Los átomos de nitrógeno son muy activos y se combinan con rapidez unos con otros. Es la combinación N2, la que es inerte, e incluso entonces no es tan inerte como el argón).

Los químicos se convencieron de la naturaleza monoatómica del argón tras medir el calor que podía absorber. Cuando se añade calor a un gas biatómico, la energía es absorbida de dos formas. Las moléculas individuales se mueven en línea recta cada vez con mayor rapidez, y también caen una y otra vez (como pequeñas pesas), cada vez más rápidamente. Un gas monoatómico puede absorber calor sólo si mueve sus átomos velozmente en línea recta. Los de un solo átomo, al ser esféricos y sin forma de pesas, no pueden absorber energía por aumentar la proporción de su caída. Además, un gas monoatómico absorbe menos calor, para el aumento de una temperatura dada, de como lo hace un gas biatómico. Cuando se probó al argón de esta manera, absorbió la cantidad de calor que era de esperar si se componía de átomos individuales. En consecuencia, se consideró resuelto este problema.

En un volumen determinado de gas argón hay tantos átomos de argón como moléculas de nitrógeno hay en el mismo volumen de gas nitrógeno a la misma temperatura y presión. Si la densidad del argón es 1,425 veces la del nitrógeno, entonces un átomo de argón es 1,425 veces tan pesado como una molécula de nitrógeno. Puesto que la molécula de nitrógeno contiene dos átomos de nitrógeno, un átomo de argón es 2,85 veces tan pesado como un átomo de nitrógeno. El peso atómico del nitrógeno es de 14, y el peso atómico del argón debe ser 14 x 2,85, o sea, aproximadamente, de 40. Esto presentaba inmediatamente un problema. Si el argón es añadido a la lista de los elementos y es colocado en la posición que le concede su peso atómico, entonces su valencia trastoca el evidente ritmo que presentan los restantes elementos. Puede comprobarse esto en la tabla 4, donde solamente aparecen inscritos los elementos con pesos atómicos próximos a 40.


Tabla 4. El lugar del argón con referencia al peso atómico

Elemento

Peso atómico
aproximado


Valencia

Azufre

32,1

2

Cloro

35,5

1

Potasio

39,1

1

Argón

40,0

0

Calcio

40,1

2

Rayleigh y Ramsay observaron correctamente que el ritmo de la valencia no debe ser trastornado. En otras dos posiciones en la tabla periódica, tal como fue elaborada por Mendeléiev, un átomo ligeramente más pesado fue colocado delante de un átomo un poco más ligero con el propósito de conseguir que el ritmo de la valencia apareciese de modo ordenado. Muy bien, entonces teníamos que afrontar otra situación semejante.

La estricta adhesión al orden del peso atómico daba las valencias en la secuencia 2, 1, 1, 0, 2. Lo que se requería era 2, 1, 0, 1, 2. Todo cuanto había que hacer era colocar el argón una posición más adelante del potasio. La parte de la lista de elementos aparecería entonces tal como se muestra en la tabla 5.



Tabla 5. El lugar del argón con referencia a la valencia

Elemento

Peso atómico
aproximado


Valencia

Azufre

32,1

2

Cloro

35,5

1

Argón

40,0

0

Potasio

39,1

1

Calcio

40,1

2

La regularidad del peso atómico quedaba alterada, pero se mantenía el ritmo de la valencia, y esto era lo más importante.

Incluso así, en el mundo químico existía una gran inquietud sobre este punto. La existencia del nuevo elemento, el ser inerte y su estado monoatómico eran, por sí mismos, factores bastante perturbadores. El hecho de que pudiera ser incrustado en la tabla periódica con sólo transgredir el orden del peso atómico parecía ser una indicación segura de que algo estaba equivocado. El propio Mendeléiev expuso su sospecha de que existía algún error, y que lo que Rayleigh y Ramsay llamaban argón podía ser realmente, después de todo, nitrógeno con un átomo trivalente (N3). Éste, al fin y al cabo, tendría un peso tres veces más elevado que un átomo de nitrógeno; o sea, aproximadamente, 42. Si únicamente pudiera suponerse que el N3 fuese inerte, entonces serviría para este propósito tan bien como el argón.




Compartir con tus amigos:
1   2   3   4   5   6   7   8   9   10   ...   35


La base de datos está protegida por derechos de autor ©composi.info 2017
enviar mensaje

    Página principal