Los gases nobles



Descargar 0.89 Mb.
Página15/35
Fecha de conversión12.11.2017
Tamaño0.89 Mb.
1   ...   11   12   13   14   15   16   17   18   ...   35

5. SUMINISTRO DE GAS NOBLE

La constitución del Universo


He dicho anteriormente que los gases nobles a veces se llaman «gases raros». Evidentemente, esto se debe a que más bien escasean en la Tierra. Sin embargo, en realidad, algunos de ellos no son completamente raros ni con mucho en el conjunto del Universo.

Los astrónomos, mediante el estudio del espectro de diversas estrellas y nebulosas, así como de la absorción luminosa por las tenues volutas de materia esparcidas entre las estrellas, han llegado a conclusiones aproximadas con respecto a la relativa abundancia de los elementos en el Universo.

En primer lugar, el elemento más simple de todos, el hidrógeno (número atómico 1), parece ser, de lejos, la sustancia más común en el Universo. Se estima que el 90% de todos los átomos que existen en el Universo son átomos de hidrógeno. Otro 9% de los átomos son átomos de helio (número atómico 2), el segundo elemento más simple. Los restantes elementos, situados todos juntos, constituyen menos del 1% de los átomos en el Universo.

La distribución de elementos en el Universo es presentada con frecuencia sobre la base de asignar el número arbitrario de 10.000 para los átomos del silicio. El número de átomos de los otros elementos se asigna en proporción. En la tabla 20 se expone la abundancia de los once elementos más corrientes en el Universo, además de los más escasos gases nobles. La tabla se basa en una valoración por tanteo preparada por el químico americano Harold Clayton Urey (nacido en 1893), en 1956. Como puede apreciarse, el helio, neón y argón figuran entre los once elementos más frecuentes. Tan sólo el criptón, xenón y, desde luego, el radón, pueden ser considerados como realmente escasos «gases raros» a escala universal.

Esta situación, en la que la materia generalmente está formada casi por completo de hidrógeno y helio, es cierta en nuestro propio Sol y posiblemente segura en los planetas gigantes en los confines de nuestro propio sistema (Júpiter, Saturno, Urano y Neptuno), si tenemos en cuenta los datos espectroscópicos y determinadas teorías sobre cómo debe estar formada la estructura del Sol y cómo se originó el Sistema Solar. Indudablemente, es también cierta para la inmensa mayoría de otras estrellas y planetas gigantes del Universo.

Sin embargo, no es verdad con respecto a la Tierra. Por cada 10.000 átomos de silicio en el Universo, hay 400.000.000 átomos de hidrógeno; pero por cada 10.000 átomos de silicio en la corteza terrestre, hay tan sólo unos 1.320 átomos de hidrógeno. Es probable que el número relativo de átomos de hidrógeno sea todavía más bajo en las capas profundas de la estructura de la Tierra. No obstante, los detalles químicos esenciales de la composición de esas capas más profundas no son conocidas bien del todo, y no cabe debatir sobre ellas.



Considerando tan sólo las capas externas de la corteza terrestre, y dando por sentado que no se perdió ningún silicio durante la formación de la Tierra, podemos sacar la conclusión de que sólo tenemos aproximadamente 1/300.000 de átomos de hidrógeno en nuestro planeta como puede esperarse por la composición del Universo.

Tabla 20. Abundancia de elementos en el Universo

Elemento

Número de átomos en el Universo
(silicio =10.000)


Hidrógeno

400.000.000

Helio*

31.000.000

Oxígeno

215.000

Neón*

86.000

Nitrógeno

66.000

Carbono

35.000

Silicio

10.000

Magnesio

9.100

Hierro

6.000

Azufre

3.750

Argón*

1.500

Criptón*

0,51

Xenón*

0,040

Radón*

Insignificante

No es difícil comprender el motivo de esta situación. Los sólidos y los líquidos se mantienen firmemente en la corteza terrestre mediante la atracción química entre los átomos y moléculas, así como por la fuerza de la gravedad. Los gases se mantienen solamente por la gravedad. Los átomos o moléculas individuales de gases están en constante movimiento, y parte de ellos se abre camino dentro de las capas superiores de la atmósfera donde el aire es tan tenue que rara vez colisionarán con otros átomos o moléculas. De cuando en cuando, uno de esos átomos o moléculas en la atmósfera superior adquirirá una velocidad mayor a diez kilómetros por segundo. Ésta es la velocidad de fuga o escape desde la Tierra. Cualquier cosa (ya sea un átomo o una nave espacial) que se mueva más velozmente, por lo general en dirección ascendente, puede abandonar la Tierra y nunca regresar. Por esta razón, la atmósfera tiene «vías de escape» y está perdiendo constantemente gas.

Cuanto mayor sea la atracción de la fuerza de gravedad de un planeta, tanto más elevada será la velocidad de escape, pero es más raro que los átomos o moléculas puedan desarrollar una velocidad suficientemente alta para este propósito. Por esta razón, Marte, con sólo dos quintas partes de la fuerza de gravedad de la Tierra, tiene una atmósfera con una densidad del 1% la de nuestro planeta. La Luna, con una fuerza de gravedad de sólo la sexta parte la de la Tierra, no ha retenido virtualmente ninguna atmósfera en absoluto. En cambio, Júpiter, con una atracción gravitacional 2,6 veces la de la Tierra (incluso en la parte superior de su atmósfera, e indudablemente una atracción muchísimo más intensa en su verdadera superficie), posee una atmósfera más densa y más profunda que la que tenemos nosotros.

Cuánto más ligero sea un átomo determinado o una molécula, tanto más rápidamente tiende, a moverse, siendo mucho más probable que exceda de la velocidad de escape y abandone la Tierra. El oxígeno y el nitrógeno, por ejemplo, consisten en moléculas bivalentes con un peso molecular de 32 (2 x 16) y 28 (2 x 14), respectivamente. Moléculas con este peso pueden ser retenidas por la Tierra. El escape de estos gases es imperceptible; si todo continúa igual que en el pasado, la Tierra puede conservar su atmósfera sin cambios durante muchos miles de millones de años.

Por otra parte, el hidrógeno, con moléculas bivalentes, tiene un peso molecular de 2 (2 x 1). Estas moléculas se mueven mucho más rápidamente que lo hacen las del oxígeno y nitrógeno, lo suficiente para superar la velocidad de escape con suma frecuencia. Por esta razón, la Tierra no puede retener el hidrógeno, y tan sólo se hallan vestigios de hidrógeno en la atmósfera (La fuerza gravitacional más potente de Júpiter puede retener hidrógeno; por eso su atmósfera es rica en este gas).

Si el hidrógeno existiese únicamente en forma de gas, entonces la Tierra carecería en la actualidad de hidrógeno. Esto es especialmente cierto, puesto que durante su formación la Tierra probablemente estaba más cálida (incluso muchísimo más cálida) de lo que está ahora; cuanto más cálida esté la superficie terrestre, más rápidamente se mueven todos los átomos gaseosos y las moléculas. Si el hidrógeno escapa de nuestra atmósfera ahora, lo hubiese hecho incluso con más facilidad durante los primeros tiempos de la Tierra. En realidad, el hidrógeno no habría sido capturado por la Tierra en formación.

No obstante, el hidrógeno forma compuestos, en particular agua, cuyas moléculas están constituidas por dos átomos de hidrógeno y un átomo de oxígeno (H2O). El propio vapor de agua no puede ser retenido por una tierra cálida, pero, en cambio, las moléculas de agua pueden quedar fijadas más o menos sólidamente a diversas sustancias minerales como agua de hidratación. La Tierra, en su origen, pudo haber perdido (o nunca ganado) todo su hidrógeno gaseoso y todo su vapor de agua, pero retuvo el agua formada en la estructura química de sus minerales. Más tarde en su historia, este agua sería gradualmente obligada a liberarse para formar los océanos (los cuales, según creen algunos geólogos, están todavía en su lento proceso de formación).

Del mismo modo, gran parte del oxígeno y del nitrógeno gaseoso (quizá incluso todo) se perdió en los orígenes de la Tierra, pero una enorme proporción quedó retenida en forma de compuestos sólidos.



Compartir con tus amigos:
1   ...   11   12   13   14   15   16   17   18   ...   35


La base de datos está protegida por derechos de autor ©composi.info 2017
enviar mensaje

    Página principal