Los gases nobles



Descargar 0.89 Mb.
Página14/35
Fecha de conversión12.11.2017
Tamaño0.89 Mb.
1   ...   10   11   12   13   14   15   16   17   ...   35

Capas electrónicas


Fuera del núcleo están los electrones que constituyen el resto del átomo. El número de electrones presente en un átomo está determinado por el número de protones en su núcleo. Para formar un átomo neutro, el número de electrones fuera del núcleo (cada uno con una carga de –1) debe ser exactamente igual al número de protones en el interior del núcleo (cada uno con una carga de +1). En consecuencia, el número de electrones presentes en un átomo neutro debe ser igual al número atómico de este elemento.

Puesto que el argón, por ejemplo, tiene un número atómico de 18, cada átomo neutro de argón debe contener 18 electrones. Esto es así para cualquiera de los isótopos del argón, ya que cada diferente isótopo posee 18 protones en su núcleo. Los isótopos varían únicamente en el número de neutrones del núcleo; puesto que los neutrones no llevan carga eléctrica, no necesitan ser neutralizados, y, por consiguiente, no influyen en modo alguno en el contenido de electrones del átomo.

Las propiedades químicas de un átomo dependen del número de electrones que lo forman. Puesto que los átomos de todos los isótopos de argón poseen el mismo número de electrones, todos ellos tienen las mismas propiedades químicas. Es esta identidad de propiedades químicas la que nos permite incluir todos los isótopos del argón como miembros de un elemento individual.

El potasio, con un número atómico de 19, debe poseer 19 electrones en cada átomo neutro de cada uno de sus isótopos. Todos los isótopos del potasio muestran propiedades químicas distintas de todos los isótopos del argón, debido a esta diferencia en su número de electrones. Por consiguiente, el potasio y el argón son dos elementos diferentes.

Así, aunque el potasio-40 y el argón-40 tienen números masa idénticos, los átomos del primero poseen 19 electrones y los del segundo tan sólo 18, lo cual les concede con amplitud diferentes propiedades químicas, y les hace ser miembros de diferentes elementos a pesar de la identidad del número masa.

Los electrones no están distribuidos en el núcleo del átomo de manera confusa, embrollada. En lugar de eso, se hallan ordenados de tal modo que parecen distribuirse a través de un número de capas electrónicas de tamaño creciente desde el núcleo hacia el exterior.

La capa electrónica más interna, justo fuera del núcleo, no puede nunca contener más de 2 electrones; la siguiente puede contener hasta 8; la siguiente, 18; la siguiente, 32, y así sucesivamente. Los átomos más complejos que conocemos, con un poco más de 100 electrones por átomo, tienen sus electrones distribuidos a través de no menos de siete conchas electrónicas.

Los 18 electrones del argón, por ejemplo, están distribuidos en tres capas; 2 electrones están en la capa más interna; 8, en la siguiente; 8, en la que está por fuera de ésta. Podemos describirlas como 2/8/8.

Para destacar la importancia de esta distribución de electrones, podemos indicar la distribución de los electrones en el caso de todos los elementos en esta porción de la tabla periódica que contiene los gases nobles. Podemos empezar, en la tabla 17, con las dos columnas de los elementos de valencia-2, indicando el número atómico antes del nombre de cada elemento y la distribución de electrones bajo el nombre.

Como puede verse, existen evidentes regularidades en esta distribución de electrones. La más exterior de las capas de los elementos de la columna encabezada por el oxígeno contiene 6 electrones en cada caso. La más exterior de las capas de los elementos en la columna encabezada por el berilio contiene 2 electrones.

Cuando dos átomos chocan, son los electrones de la capa más externa los que soportan la colisión, por así decirlo. Una reacción química supone una transferencia de electrones de un átomo a otro (bien en total o bien en parte) y la naturaleza de esta transferencia depende casi por entero del número de electrones en la capa más externa expuesta.

Consideremos un átomo de azufre y otro de selenio. El número total de electrones en el primero es de 16 y en el segundo de 34, de modo que los dos átomos son miembros de elementos diferentes. No obstante, la distribución electrónica en el azufre es 2/8/6 y en el selenio, 2/8/18/6. Aunque el número total de electrones es diferente, el número en la capa más externa expuesta es el mismo. Por consiguiente, el comportamiento químico del azufre y del selenio es bastante similar, y aunque los dos son elementos diferentes, desde el principio fueron reconocidos como miembros de la misma familia de elementos.

Oxígeno, azufre, selenio, telurio y polonio pertenecen a lo que se acostumbra llamar familia del oxígeno, de acuerdo con su primer miembro. Del mismo modo, berilio, magnesio, calcio, estroncio, bario y radio pertenecen a una familia de elementos habitualmente denominada metales alcalinotérreos (por razones químicas no necesitamos profundizar en esta cuestión).

En general, ha sido experimentado por los químicos que la ordenación de los electrones es más estable cuando la capa electrónica más externa contiene exactamente 8 electrones. (La única excepción es cuando la capa más interna es la única presente. Puede contener un máximo de 2 electrones, y un contenido de 2 es una situación muy estable).



Tabla 17. Distribución de electrones en los elementos de valencia-2

Valencia 2

Valencia 2




4 - Berilio
2/2

8 - Oxígeno
2/6

12 - Magnesio
2/8/2

16 - Azufre
2/8/6

20 - Calcio
2/8/8/2

34 - Selenio
2/8/18/6

38 - Estroncio
2/8/18/8/2

52 - Telurio
2/8/18/18/6

56 - Bario
2/8/18/18/8/2

84 - Polonio
2/8/18/32/18/6

88 - Radio
2/8/18/32/18/8/2

Consideremos el átomo de magnesio con una ordenación electrónica de 2/8/2. Si contuviera 2 electrones en la capa más exterior, la ordenación de los restantes electrones sería 2/8, una situación particularmente estable. En realidad, entonces, el átomo de magnesio tiene una fuerte tendencia a ceder exactamente 2 electrones. Un electrón puede ser transferido a cada uno de los dos átomos diferentes, de manera que el átomo de magnesio puede terminar formando una combinación con los otros dos átomos. Por esta razón se dice que el magnesio tiene una valencia de 2. Por la misma causa, todos los demás metales de alcalinotérreos tienen una valencia de 2.

Consideremos a continuación el átomo de oxígeno. Su ordenación es 2/6, pero si pudiese ganar 2 electrones, la ordenación se convertiría en la muy estable de 2/8. Realmente, el átomo de oxígeno muestra una fuerte tendencia a aceptar 2 electrones. Puede aceptar un electrón de cada uno de los dos átomos diferentes y terminar formando una combinación con otros dos átomos. Por eso decimos que el oxígeno tiene una valencia de 2, y lo mismo pasa con todos los otros elementos de la familia del oxígeno.

Realmente, todo el concepto de valencia (hallado por cálculo en la década de 1850 partiendo de datos puramente químicos) depende de la distribución de los electrones dentro de los átomos. Puesto que la tabla periódica fue determinada por consideraciones de valencia, también ella depende de la distribución de los electrones dentro de los átomos (aunque los detalles de la distribución de electrones no fueron comprendidos hasta medio siglo después de que fuese completada la tabla periódica).

En la tabla 18 examinaremos a continuación las dos columnas de elementos de valencia-1, que presentan una situación completamente análoga.

Flúor, cloro, bromo, yodo y astato, cada uno con 7 electrones en la capa más externa de sus átomos, forman un grupo muy similar de elementos, llamados halógenos. Litio, sodio, potasio, rubidio, cesio y francio, cada uno con un solo electrón en la concha más exterior, forman otra familia, la de metales alcalinos.

Cada uno de los metales alcalinos puede tener el electrón individual en la capa más externa y 8 electrones en lo que se convierte después en la capa más externa. El potasio, por ejemplo, cambia de 2/8/8/1 a la forma estable 2/8/8. Cada uno de los halógenos muestra una fuerte tendencia a seleccionar un electrón, de modo que el cloro cambia entonces su distribución de electrones de 2/8/7 a 2/8/8. En consecuencia, las dos familias tienen una valencia de 1.



Tabla 18. Distribución de electrones en los elementos de valencia-1

Valencia 1

Valencia 1

1 - Hidrógeno
1

3 - Litio
2/1

9 - Flúor
2/7

11 - Sodio
2/8/1

17 - Cloro
2/8/7

19 - Potasio
2/8/8/1

35 - Bromo
2/8/18/7

37 - Rubidio
2/8/18/8/1

53 - Yodo
2/8/18/18/7

55 - Cesio
2/8/18/18/8/1

85 - Astato
2/8/18/32/18/7

87 - Francio
2/8/18/32/18/8/1

(El hidrógeno, con un solo electrón, puede fácilmente perder este electrón o, en cierto modo menos corriente, seleccionar un electrón para constituir una forma estable número 2 para la capa más interna. Por esta razón, el hidrógeno es más bien un elemento único y no es realmente un miembro de ninguna familia bien definida. Comparte alguna de sus propiedades químicas con los metales alcalinos y algunas con los halógenos, pero presentan distintos e importantes puntos de diferencia en cada caso).

Ahora estamos ya en condiciones de examinar la tabla 19, que trata de la distribución de electrones en los gases nobles. Como puede apreciarse, cada uno tiene una capa externa que contiene 8 electrones (excepto el helio, que tiene 2 electrones en su única capa —una situación equivalente); en consecuencia, no es sorprendente que formen una familia definida de elementos. Además, con 8 electrones en la órbita más externa (o 2 para el helio) no existe tendencia ni a ceder ni a aceptar electrones para lograr una situación estable. La situación estable está ya presente.



Tabla 19. Distribución de electrones en los gases nobles

Valencia 0

2 - Helio
2

10 - Neón
2/8

18 - Argón
2/8/8

36 - Criptón
2/8/18/8

54 - Xenón
2/8/18/18/8

86 - Radón
2/8/18/32/18/8

Cuando declaro que los gases nobles no muestran tendencia a ceder ni a captar electrones, estoy indicando que los gases nobles no tienden a reaccionar con otras sustancias5. Se debe a su estable distribución de electrones el que los átomos de los gases nobles sean tan inertes, equilibrados, y «nobles»; rechazando mezclarse con otros átomos y formar compuestos; rechazando incluso combinarse entre ellos mismos, permaneciendo en estado gaseoso como átomos simples y separados.


Compartir con tus amigos:
1   ...   10   11   12   13   14   15   16   17   ...   35


La base de datos está protegida por derechos de autor ©composi.info 2017
enviar mensaje

    Página principal