Ii. El petróleo y sus quimiderivados



Descargar 144.54 Kb.
Página2/4
Fecha de conversión24.05.2018
Tamaño144.54 Kb.
1   2   3   4

Figura 8. Esquema de un pozo de petróleo.

Su precio siempre es mayor que el del crudo pesado, el cual es un poco más difícil de procesar. En México contamos con ambos tipos de crudo, y aquí reciben el nombre de crudo istmo, el ligero, y crudo maya, el pesado. Desde 1988 se han encontrado yacimientos de crudo super ligero, al que se ha denominado crudo olmeca. En 1992, las exportaciones de crudo alcanzaron los 7400 millones de dólares, 25% correspondió al tipo istmo, 60% al maya y 15% al olmeca. Los principales países de destino fueron Estados Unidos (58.3%), España (17.5%), Japón (6.6%) y Canadá (2.3%).

ENLACES DOBLES Y TRIPLES. LA SERPIENTE DE KEKULÉ

Cuando en una fórmula el químico coloca una raya entre dos átomos enlazados, está diciendo que una pareja de electrones los mantiene unidos. En los hidrocarburos de la fórmula 6 se presenta este tipo de unión, llamada enlace sencillo. A los hidrocarburos de cadena abierta como éstos se los llama alcanos. Sin embargo, ocurre también que cuatro o seis electrones sirvan de lazo de unión entre dos átomos de carbono, en cuyo caso hablamos de enlaces dobles o enlaces triples. A los hidrocarburos con estos enlaces reforzados se los llama alquenos y alquinos, respectivamente. La fórmula 7 muestra algunos ejemplos.





Fórmula 7. Los alquenos más simples son la base de productos poliméricos ampliamente utilizados: a) etileno, b) propileno, c) acetileno, el alquino con dos átomos de carbono. A este último se lo empleó para el alumbrado público antes de la aplicación de la electricidad.

Como seis electrones enlazan mejor que cuatro y éstos mejor que dos, la distancia entre átomos de carbono es menor en un triple enlace que en uno doble y que en uno sencillo (véase la fórmula 8).





Fórmula 8. Distancia carbono-carbono en los enlaces sencillo, doble y triple. Un picómetro (pm) es la billonésima parte de un metro.

Los hidrocarburos forman ciclos, de una manera parecida a como un perro se muerde la cola. Es cosa de que el último carbono de una cadena abierta se enlace con el primero. Un par de compuestos cíclicos de utilidad se muestran en la fórmula 9.

Un hidrocarburo muy especial es el benceno, que tiene la fórmula C6H6. Se dice que Friedrich August Kekulé, un notable químico alemán del siglo pasado, resolvió el problema de su estructura en 1866, cuando soñó a una serpiente que se comía su propia cola. En efecto, el benceno es un hidrocarburo cíclico, aunque su reducido número de hidrógenos habla de la presencia de enlaces múltiples.



Fórmula 9. Hidrocarburos cíclicos. a) Ciclopropano, un potente anestésico empleado en cirugía. b) Mentol. El principio activo de la menta cuenta con un anillo de seis carbonos (ciclohexano).



Fórmula 10. a) Estructuras del benceno según Kekulé. b) Concepción actual del benceno. Los electrones de los dobles enlaces propuestos por Kekulé no se hallan entre pares específicos de átomos de carbono. En realidad se encuentran deslocalizados alrededor de todos los átomos del ciclo, lo cual se representa por el círculo punteado.

TAQUIGRAFÍA QUÍMICA

En química orgánica es común representar las fórmulas de los compuestos en forma de una gráfica que condensa la información. Las reglas son:

a) eliminar la escritura de los símbolos de carbono e hidrógeno,

b) cada trazo lineal representará una unión carbono-carbono, y

c) evitar la escritura de los enlaces carbono-hidrógeno.

Se han colocado tres ejemplos de esta taquigrafía en la fórmula 11.



Fórmula 11. Fórmulas desarrolladas y gráficas de tres compuestos: a) Butadieno. B) Ciclopropano. C) Benceno.

Esta simplificación de las fórmulas, como se verá, es de mucha utilidad para ahorrar tinta y tiempo. Convierte además al químico en un experto trazador de figuras geométricas.

UTILIZACIÓN GLOBAL DEL PETRÓLEO

Del petróleo se aprovecha tanto el gas natural como el aceite crudo. En la figura 9 se presenta, a partir de datos de la ONUDI (Organización de las Naciones Unidas para el Desarrollo Industrial), el destino mundial anual (1980) de los 1 100 millones de toneladas producidas de gas natural y de los 3 000 millones de toneladas de aceite crudo.





Figura 9. Destino de los hidrocarburos del petróleo en el ámbito mundial (en toneladas por año). (Fuente: ONUDI, The petrochemical Industry in Developing Countries, 1985.)

Podemos observar que una proporción alta del destino final del petróleo es su combustión como energético. Únicamente alrededor de 7% se utiliza para la obtención de productos petroquímicos. Por lo visto, el mercado mundial no da para más.

Por lo pronto, vale la pena detenernos un poco en el cuadro de refinación. Más adelante nos ocuparemos tanto de la petroquímica que se deriva del gas natural (120 millones de toneladas al año, de acuerdo con la figura 9) como del aceite crudo (210 toneladas anuales). Pero antes de empezar veamos uno de los peligros existentes detrás de los hidrocarburos.

CÁNCER Y PRODUCTOS AROMÁTICOS

Con la industrialización de Europa en el siglo pasado se descubrió que los trabajadores del carbón y los deshollinadores de chimeneas desarrollaban cáncer en la piel. Hacia 1915, en el Japón, se demostró que bastaba pintar a un conejo con alquitrán (un derivado de la pirólisis del carbón de hulla) para que se le indujera cáncer.

Se estima que más de 50% del cáncer humano es producido por sustancias carcinogénicas que se hallan en el medio ambiente. Los ejemplos del párrafo anterior han ratificado que algunos hidrocarburos aromáticos policíclicos producen cáncer (véase la fórmula 12). Parece que el benceno también causa cáncer.

El benzopireno es uno de los carcinógenos más poderosos y se lo considera una de las principales causas del cáncer pulmonar. Se produce en la combustión de diversos productos orgánicos, como la gasolina, el diésel y, desde luego, los cigarros. Se lo ha encontrado incluso en alimentos preparados por combustión directa, como los famosos tacos al carbón.

No son del todo bien conocidas las razones por las que algunos hidrocarburos producen cáncer y otros no. Se manejan hipótesis relativas a la distribución de los electrones y otras relacionadas con el tamaño de las moléculas (para que se intercalen apropiadamente en el ADN).





Fórmula 12. Reciben el nombre de aromáticos todos los compuestos derivados del benceno (véase la fórmula 10). Los aquí mostrados reúnen varios ciclos bencénicos en la misma molécula. Algunos de estos compuestos inducen cáncer por el contacto prolongado con ellos. a) Antraceno (no es carcinógeno). b) Benzo [] antraceno (es carcinógeno). c) Pireno (no es carcinógeno) . d) Benzo [a] pireno (es un carcinógeno muy importante).

DESTILACIÓN PRIMARIA

Como ya mencionamos, el petróleo crudo es una mezcla de miles de hidrocarburos y otros compuestos. La forma elemental de aumentar su valor es separar de él distintas fracciones de compuestos semejantes.

Para empezar, se eliminan los sólidos térreos suspendidos en el crudo y de inmediato se envía éste a la refinería. Allí el primer paso es la destilación del crudo. En este proceso se aprovecha que cada compuesto tiene una temperatura característica de ebullición. En el laboratorio bastan un mechero, un matraz y un refrigerante para separar una mezcla por destilación. Sin embargo, en la industria se requieren enormes equipos que se denominan torres de destilación. El diagrama de una torre de destilación primaria se muestra en la figura 10.

Antes de su ingreso a la torre, el petróleo crudo es precalentado en hornos que queman gas natural. Por motivos de ahorro energético, las mismísimas corrientes que salen de la torre, desde la menos hasta la más caliente, también se utilizan en el precalentamiento del aceite crudo, antes de entrar al horno. Ello implica un ahorro de gas natural. Así, en ocasiones el crudo se aprovecha para condensar el gas que sale por la parte superior de la torre (véase la figura 10) y para enfriar el resto de las corrientes de salida. En este trayecto el crudo se precalienta y está listo para entrar al horno, y finalmente a la torre.



Figura 10. Torre de destilación primaria y tren de calentamiento de crudo. En el interior de la torre existen dos corrientes que fluyen en direcciones opuestas. Hacia arriba marcha la fase gaseosa, impulsada por el rehervidor de la parte inferior. Hacia abajo cae por gravedad la fase líquida, alimentada por el condensador de la parte superior. En cada plato de la torre el gas y el líquido entran en contacto íntimo. El resultado es que los compuestos más volátiles y ligeros pasan a la fase gasosa, con lo que continúan su ascenso hacia el plato superior, mientras que los menos volátiles se condensan como líquidos y acompañan esta fase hacia el plato inferior.

Para el ingeniero químico, el diseño de una torre de éstas es un problema clásico de su profesión. ¿Qué diámetro proponer para la torre? ¿Cuántos platos de contacto líquido-vapor hacen falta? ¿En qué plato alimentar el crudo? ¿A qué temperatura debe introducirse? ¿Cuánto vapor alimentar al rehervidor?

El arranque de la planta de destilación es otro bello problema: ¿cómo lograr que las corrientes destiladas, que antes constituían el crudo, sean las que lo precalienten? Pruebe el lector su ingenio para sugerir un procedimiento de arranque.

FRACCIONES DEL PETRÓLEO

La temperatura cambia a lo largo de la torre. En la parte superior se tiene la más baja, donde se encuentran en equilibrio los componentes más ligeros (y de menor punto de ebullición). Por el contrario, en la parte inferior la temperatura es mucho más alta y lo es también la proporción de los componentes pesados y menos volátiles.

Como se colocan diversas salidas laterales en la torre, el petróleo crudo logra separarse en varias fracciones, cada una con un diferente intervalo de temperaturas de ebullición e hidrocarburos de diferente número de carbonos en su cadena (véase el cuadro 7).



CUADRO 7. Fracciones del petróleo que abandonan la torre de destilación.



Nombre

Intervalo de temperatura de ebullición (°C)

Número de carbonos

Uso



Gas incondensable

menor de 20

1 a 4

combustible

Éter de petroleo

20 - 80

5 a 8

disolvente

Gasolina

35 - 220

5 a 12

combustible de autos

Querosina

200 - 315

12 a 16

combustible de aviones

Aceite ligero

250 - 375

15 a 18

combustible diésel

Aceite lubricante y grasas

mayor de 350

16 a 20

lubricante

Cera

sólido que funde entre 50 y 60

20 a 30

velas

Asfalto

sólido viscoso

-----

pavimento

Residuo

sólido

-----

combustible



En la figura 11 se muestra un cuadro sinóptico con los destinos principales de las fracciones del petróleo. Cada una de las corrientes que abandonan la torre primaria de destilación recibe tratamientos posteriores en la propia refinería o en plantas externas.



Figura 11. Destino de las diferentes fracciones del petróleo, después de la destilación primaria.

Cada uno de estos procesos posteriores a la destilación proporciona mayor valor agregado a los productos del petróleo y los transforma en bienes mucho más aprovechables directamente por la población. La industria del petróleo consiste en un frondoso árbol cuyo tronco es el petróleo (crudo más gas natural), sus ramas principales son los efluentes de la destilación primaria, y cada una de éstas se deriva hacia diversos procesos ulteriores.

Así, el largo camino que parte del petróleo en el pozo y que llega hasta la camisa que usamos, consta de toda una secuencia de pasos, conocida como cadena productiva. Se entiende por cadena productiva una estructura eslabonada de productos petroquímicos que, con base en los productos básicos de la refinería, establece una secuencia genealógica que pasa por los petroquímicos intermedios y llega a los de uso final, que sirven como materia prima de multitud de bienes de consumo.

En este libro tendremos oportunidad de conocer algunas de estas cadenas productivas.

ISÓMEROS: ¿CON QUÉ SE COMEN?

En química se emplea el término isómero para designar a dos compuestos con la misma fórmula (lo cual implica la misma composición porcentual de cada elemento), pero cuyas moléculas muestran un ordenamiento espacial diferente de sus átomos. Por ejemplo, el éter metílico y el alcohol comercial son sustancias isoméricas. Sus fórmulas condensadas son C2H6O, pero sus fórmulas moleculares revelan diferencias (véase la fórmula 13).

Esa diferente posición del átomo de oxígeno es crucial. En ambos casos tenemos líquidos volátiles transparentes, pero uno es un potente anestésico (éter) y el otro un tóxico peligroso (es el bien conocido alcohol que encontramos en el vino, la cerveza, el pulque, el tequila, etcétera).



Fórmula 13. Dos moléculas isométricas. Obsérvese que contienen el mismo número de átomos de cada elemento, esto es, seis hidrógenos, dos carbonos y un oxigeno: a) éter metílico; b) alcohol etílico.

En los hidrocarburos aparece frecuentemente el fenómeno de la isomería. Ello es clave, por ejemplo, en el octanaje de una gasolina.

LA GASOLINA Y EL OCTANAJE

Las gasolinas mexicanas (Nova y Extra) se vendían con dos grados de octanaje hasta 1990. Hoy las gasolinas comerciales son la Nova y la Magna Sin, esta última para los automóviles fabricados desde 1991 que cuentan con un convertidor catalítico para reducir la contaminación, del que hablaremos más adelante. Por lo pronto respondamos a la pregunta, ¿qué es el octanaje?

Un motor está diseñado para que la gasolina gasificada sea admitida al pistón y, luego de ser comprimida, explote por la acción de la chispa de la bujía. No son adecuadas aquellas gasolinas que explotan por el solo hecho de comprimirlas, pues se queman prematuramente (el fenómeno se llama preignición). Esto produce que el pistón se extienda antes de que el cigueñal haya completado su ciclo. El resultado es un golpeteo constante, que se conoce como cascabeleo, que tarde o temprano acaba con los motores.

La mayor o menor tendencia a no producir cascabeleo se mide por el octanaje (o grado de octano) de cada gasolina. Las gasolinas con mayor octanaje son las que producen menor cascabeleo, mientras que las de menor octanaje son más susceptibles de preignición.

De forma arbitraria se ha asignado el octanaje de 0 y 100, respectivamente a dos hidrocarburos puros: el n-heptano, que trabaja pésimamente en los motores, y el 2,2,4-trimetilpentano (un isómero del octano C8H18), que se desempeña muy bien (véase la fórmula 14). Por ejemplo, cuando decimos que una gasolina tiene un octanaje de 80, queremos indicar que, ante la combustión en el motor, se comporta igual que una mezcla de 80% de 2,2,4-trimetilpentano y 20% de n-heptano.



Fórmula 14. Conforme más ramificaciones hay en un hidrocarburo, el octanaje aumenta; a) n-heptano (0 octanos); b) 2,2,4-trimetilpentano (100 octanos); c)2,2,3,3-tetrametilbutano (103 octanos).

Cada hidrocarburo tiene un octanaje característico en esta escala. La mayoría se encuentra entre el 0 y el 100, pero pueden ocurrir los octanajes negativos (para los hidrocarburos que se comportan todavía peor que el n-heptano) o los mayores de cien (para los que son mejores que el 2,2,4-trimetilpentano). Los isómeros lineales (como el n-heptano) poseen el peor octanaje, mientras que aquellos con más ramificaciones son óptimos (véase el cuadro 8). Por ejemplo, otro isómero del octano, el 2,2,3,3-tetrametilbutano de la fórmula 14 (c) tiene un octanaje de 103. Asimismo, los hidrocarburos bencénicos, también llamados aromáticos (derivados del benceno, el hidrocarburo de la fórmula 10) son de alto octanaje.



CUADRO 8. Octanaje de algunos hidrocarburos puros.



 

Hidrocarburo

Índice de octano

 



 

n-pentano

62

 

 

n-heptano

0

 

 

n-octano

17

 

 

3-metilheptano

35

 

 

2, 3-dimetilhexano

79

 

 

2, 2, 4-trimetilpentano

100

 

 

benceno

106

 



Esto no quiere decir que los hidrocarburos lineales no tengan utilidad. Son malos componentes de las gasolinas, pero resultan indispensables en otros procesos industriales (por ejemplo, para extraer aceites de semillas como la soya, el algodón, el maíz, el ricino, el cacahuate y el lino).

CATÁLISIS. LA FORMA QUÍMICA DE METER EL ACELERADOR

Cada cambio químico sucede a una velocidad característica, en función de una variedad de condiciones. Mientras que existen fenómenos químicos extraordinariamente rápidos, también los hay desesperantemente lentos. Una explosión es un ejemplo de un fenómeno químico veloz. Por contraste, los diamantes se convierten lentamente en grafito, en un proceso que dura millones de años.

Cuando se trata de un proceso químico para producir un bien determinado, el factor económico entra en juego y el químico debe idear formas de acelerar su ocurrencia. Para ello hace participar alguno de los siguientes parámetros:

a) La concentración de los compuestos que reaccionan. Si ésta aumenta, existe mayor probabilidad de que sus moléculas se encuentren y reaccionen.

b) La temperatura. Por lo general, el calentamiento aumenta la velocidad de reacción. Los refrigeradores utilizan este principio, ya que al mantener fría la comida se reduce su velocidad de descomposición.

c) El tamaño de las partículas. Si algún reactivo es un sólido, conviene molerlo finamente.

d) Catalizadores. Son sustancias que aceleran la reacción, pero que quedan intactas al final de la misma (véase la figura 12). Por otra parte, se llama inhibidores a las sustancias que retardan la velocidad de las reacciones químicas. En la industria alimentaria, los conservadores, sustancias preservativas y antioxidantes son inhibidores que retardan la descomposición de la comida.

Sin duda, la catálisis es clave en la industria del petróleo. Es más, cerca de 90% de todos los procesos químicos industriales incluyen la presencia de un catalizador.



Figura 12. Ejemplo del efecto de un catalizador. a) La molecula A-A es absorbida en el llamado sitio activo del catalizador. b) La molécula B-B arriba también al sitio activo, en donde se rompen los enlaces A-A y B-B y se forman los nuevos enlaces A-B. c) Los productos abandonan el sitio activo.

Entre ellos, tal vez los más importantes sean, por su volumen:

- La producción de amoniaco, NH3, base de los fertilizantes nitrogenados;

- la síntesis de ácido sulfúrico, el producto químico más extendido (se producen anualmente unos 150 millones de toneladas en el mundo);

- la hidrogenación de aceites comestibles;

- la desintegración catalítica, y

- la reformación del petróleo.

Más adelante comentaremos algunos de estos procesos.

La catálisis no es privativa de la industria. Se presenta diariamente, en cada momento, en el interior de nuestros organismos. Las enzimas (proteínas globulares de las que nos ocuparemos al final del siguiente capítulo) controlan casi todas las reacciones químicas corporales, con lo que hacen posible la vida. De este tamaño es la importancia de la catálisis.

LA QUÍMICA Y EL OCTANAJE

Ya que la ciencia central nos ayuda a modificar a voluntad el arreglo atómico en los compuestos, su acción puede utilizarse para transformar hidrocarburos de bajo octanaje en otros con alto índice de octano.

La participación de la química en las refinerías ha resuelto dos problemas graves:

a) que la gasolina natural que se obtiene por destilación sólo alcanza un octanaje cercano a 50 y no puede utilizarse tal cual, para los motores de combustión interna;

b) que la gasolina natural sólo constituye de 20 a 30% del petróleo crudo y esa cantidad es insuficiente para satisfacer la demanda.

Por lo menos, son tres los tipos de reacciones químicas que ayudan a obtener artificialmente más y mejor gasolina:

1) Desintegración térmica y catalítica:

Mediante este proceso se rompen los hidrocarburos de cadenas muy largas en dos o más que cuentan con cinco a nueve carbonos, los cuales sirven como gasolinas. La desintegración térmica logra este efecto gracias a la elevación de la temperatura. Sin embargo, la presencia de un catalizador (acelerador de reacciones) puede servir para lograr el mismo efecto a bajas temperaturas y presiones.




Compartir con tus amigos:
1   2   3   4


La base de datos está protegida por derechos de autor ©composi.info 2017
enviar mensaje

    Página principal